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Andrä, W., Nowak, H. (eds.)

Magnetism in Medicine
A Handbook

2007

ISBN: 978-3-527-40558-9

Hendee, W. R., Ritenour, E. R.

Medical Imaging Physics

2002

ISBN: 978-0-471-38226-3



Seizure Prediction in Epilepsy

From Basic Mechanisms to Clinical Applications

Edited by
Björn Schelter, Jens Timmer,
and Andreas Schulze-Bonhage



The Editors

Dr. Björn Schelter
University of Freiburg
Center for Data Analysis (FDM)
Freiburg, Germany
schelter@fdm.uni-freiburg.de

Dr. Jens Timmer
University of Freiburg
Center for Data Analysis (FDM)
Freiburg, Germany
jeti@fdm.uni-freiburg.de

Dr. Andreas Schulze-Bonhage
University Hospital Freiburg
Epilepsy Center
Freiburg, Germany
andreas.schulze-bonhage@
uniklinik-freiburg.de

Cover
based on an illustration of a human head taken
from ‘‘Gray’s Anatomy’’, first published in
1918

� All books published by Wiley-VCH are
carefully produced. Nevertheless, authors,
editors, and publisher do not warrant the
information contained in these books,
including this book, to be free of errors.
Readers are advised to keep in mind that
statements, data, illustrations, procedural
details or other items may inadvertently be
inaccurate.

Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication
Data
A catalogue record for this book is available
from the British Library.

Bibliographic information published by
the Deutsche Nationalbibliothek
Die Deutsche Nationalbibliothek lists this
publication in the Deutsche National-
bibliografie; detailed bibliographic data are
available in the Internet at
<http://dnb.d-nb.de>.

 2008 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim

All rights reserved (including those of
translation into other languages). No part of
this book may be reproduced in any
form – by photoprinting, microfilm, or any
other means – nor transmitted or translated
into a machine language without written
permission from the publishers. Registered
names, trademarks, etc. used in this book,
even when not specifically marked as such,
are not to be considered unprotected by law.

Typesetting Laserwords Private Ltd,
Chennai, India
Printing betz-druck GmbH, Darmstadt
Binding Litges & Dopf GmbH,
Heppenheim

Printed in the Federal Republic of Germany
Printed on acid-free paper

ISBN: 978-3-527-40756-9



V

Contents

Preface XV

Thanks to the Sponsors of the Workshop XVII

List of Contributors XIX

Color Plates XXVII

1 Unpredictability of Seizures and the Burden of Epilepsy 1
Andreas Schulze-Bonhage, Anne K

..
uhn

1.1 Introduction 1
1.2 Medical Implications of Unpredictability 2
1.2.1 Diagnostic Uncertainty 2
1.2.2 Treatment Options 2
1.2.3 Physical Risks 3
1.2.4 Risks Associated with Continuous Long-term

Antiepileptic Treatment 4
1.3 Psychosocial Consequences of Unpredictability 4
1.3.1 Loss of Control 4
1.3.2 Problems with Coping Strategies 6
1.3.3 Depression and Anxiety 6
1.3.4 Immobility and Vocational Restrictions 7
1.4 Conclusion 8

References 8

2 The History of Seizure Prediction 11
M. Jachan, H. Feldwisch genannt Drentrup, B. Schelter,
J. Timmer

2.1 Introduction 11
2.2 Motivation 11
2.2.1 The Need for a Seizure-prediction Device 12
2.2.2 The Assumed Preictal Phase 14
2.3 A Historical Overview 15
2.3.1 Older Types of Studies 16

Seizure Prediction in Epilepsy. Edited by Björn Schelter, Jens Timmer and Andreas Schulze-Bonhage
Copyright  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40756-9



VI Contents

2.3.2 Modern Types of Studies 16
2.3.3 Survey of Prediction Methods 17
2.4 The State of the Art in Seizure Prediction 19
2.4.1 Partially Solved Issues 19
2.4.2 Unsolved Issues 20
2.5 Seizure Prediction in the Future 21

References 22

3 Impact of Computational Models for an Improved Understanding
of Ictogenesis: From Single Neurons to Networks of Neurons 25
Marie-Therese Horstmann, Andy M

..
uller, Alexander Rothkegel,

Justus Schwabedal, Christian E. Elger, Klaus Lehnertz
3.1 Introduction 25
3.2 Single Neuron Models 27
3.2.1 Conductance-based Models 28
3.2.2 Single Neuron Models and Epilepsy 29
3.3 Neural Networks 31
3.3.1 Network Characteristics 32
3.4 Neural Mass Models of the EEG 35
3.5 Conclusion 38

References 39

4 Effective and Anatomical Connectivity in a Rat Model of
Spontaneous Limbic Seizure 45
Paul R. Carney, Alex Cadotte, Thomas B. DeMarse, Baba Vemuri,
Thomas H. Mareci, William Ditto

4.1 Introduction 45
4.2 Granger Causality 46
4.2.1 Analysis of Temporal Lobe Seizures 48
4.2.2 Results 50
4.2.3 Discussion 52
4.3 Structural Visualization with Magnetic Resonance 54
4.3.1 Diffusion Tensor Imaging 54
4.3.2 High Angular Resolution Diffusion Imaging 55
4.4 Acknowledgments 57

References 58

5 Network Models of Epileptiform Activity: Explorations in Seizure
Evolution and Alteration 61
Pawel Kudela, William S. Anderson, Piotr J. Franaszczuk,
Gregory K. Bergey

5.1 Introduction 61
5.2 Time-frequency Analyses of Seizure Dynamics

and Evolution 62
5.3 Model Assumptions and Modeling Approach 63



Contents VII

5.4 Recurrent Neuronal Bursting and Mechanism of Burst
Frequency Decline 64

5.5 Network Models of Epileptiform Activity Disruption
by External Stimulation 67

5.6 Chain Network Model Studies 69
5.7 Networks with Realistic Cortical Architecture 71
5.8 Conclusions 79
5.9 Acknowledgment 80
5.10 Appendix 80

References 81

6 Recurrent Cortical Network Activity and Modulation
of Synaptic Transmission 83
Yousheng Shu

6.1 Introduction 83
6.2 The Ability of the Cortical Network to Generate

Recurrent Activity 84
6.3 Cortical Network Activity as Propagating Electrical Waves 85
6.4 Balance of Excitation and Inhibition during Cortical

Network Activity 86
6.5 Initiation and Termination of Cortical Network

Activity by Electrical Shock 86
6.6 Epileptiform Activity Results from Imbalance of Excitation

and Inhibition 89
6.7 Conduction of Action Potentials in the Axon during Normal

and Epileptiform Activity 89
6.8 Traveling of Subthreshold Potentials in the Axon 90
6.9 Modulation of Intracortical Synaptic Transmission by Presynaptic

Somatic Membrane Potential 91
6.10 Mechanisms Underlying EPSP Facilitation Induced

by Somatic Depolarization 93
6.11 Summary 94
6.12 Acknowledgments 94

References 94

7 Epilepsy as a Disease of the Dynamics of
Neuronal Networks – Models and Predictions 97
Fernando Lopes da Silva

7.1 Introduction 97
7.2 Experimental Observations – Case 1: The WAG/Rij Rat

as a Genetic Model for Absence Epilepsy 98
7.3 Computational Model of the Thalamo–Cortical

Neuronal Networks 99
7.4 Model Predictions 100
7.5 Experimental Observations – Case 2: Hippocampal

Seizures 103



VIII Contents

7.6 Active Observation: Stimulation with ‘Carrier Frequency’ –
Changes in Phase Clustering Index (PCI) 104

7.7 Conclusion 106
References 107

8 Neuronal Synchronization and the ‘Ictio-centric’ vs the Network
Theory for Ictiogenesis: Mechanistic and Therapeutic
Implications for Clinical Epileptology 109
Ivan Osorio, Mark G. Frei, Ying-Cheng Lai

8.1 Seizures and Neuronal Synchronization:
Increased or Decreased Relative to Interictal Values? 109

8.2 The ‘Focus’ (‘Ictio-centric’) vs the Network Theory
in Ictiogenesis 112
References 114

9 Cellular Neural Networks and Seizure Prediction:
An Overview 117
P. Fischer, F. Gollas, R. Kunz, C. Niederh

..
ofer, H. Reichau,

R. Tetzlaff
9.1 Introduction: Cellular Neural Networks 117
9.2 Spatio-temporal Signal Prediction in Epilepsy by Delay-type

Discrete-time Cellular Nonlinear Networks (DT-CNN) 119
9.3 Identification of EEG-signals by Reaction–Diffusion CNN 121
9.4 A CNN-based Pattern Detection Algorithm 123
9.4.1 Preprocessing the Data 124
9.4.2 Performing the Pattern Detection 124
9.4.3 Detecting Seizures by POI Evaluation 125
9.5 CNN for Approximation of the Effective Correlation

Dimension in Epilepsy 126
References 128

10 Time Series Analysis with Cellular Neural Networks 131
Anton Chernihovskyi, Dieter Krug, Christian E. Elger,
Klaus Lehnertz

10.1 Introduction 131
10.2 Cellular Neural Networks 132
10.3 An Analytical CNN-based Method for Pattern

Detection in Non-stationary and Noisy Time
Series 134

10.4 An Adaptive CNN-based Method to Measure
Synchronization 138

10.4.1 Learning Synchronization in EEG Time Series
with CNN 141

10.5 Conclusions and Outlook 144
References 145



Contents IX

11 Intrinsic Cortical Mechanisms which Oppose Epileptiform Activity:
Implications for Seizure Prediction 149
Andrew J. Trevelyan

11.1 Introduction 149
11.2 The Inhibitory Surround in Cortex: In Vivo Studies 150
11.3 In Vitro Studies: Strengths and Weaknesses 151
11.4 Inhibitory Surround in an In Vitro Preparation 153
11.5 Models of the Inhibitory Surround: The Importance

of how Synaptic Inputs are Distributed 157
11.6 Surround Inhibition: Implications for Seizure Prediction 158

References 159

12 Is Prediction of the Time of a Seizure Onset the Only Value
of Seizure-prediction Studies? 163
Anatol Bragin, Jerome Engel Jr

12.1 Purpose of Seizure-prediction Research 163
12.2 Seizure Onsets in Patients with MTLE 164
12.3 Factors Triggering Seizure Activity 164
12.4 Simulating Human Electrographic Patterns of Seizure Onsets

in Acute In Vivo Animal Experiments 165
12.5 Conclusions 166

References 167

13 High-frequency Pre-seizure Activity and Seizure Prediction 169
Premysl Jiruska, John G.R. Jefferys
References 172

14 Characterizing the Epileptic Process with Stochastic Qualifiers
of Brain Dynamics 175
Jens Prusseit, Christian E. Elger, Klaus Lehnertz

14.1 Introduction 175
14.2 Data-driven Fokker–Planck Models 176
14.3 EEG Analysis 178
14.3.1 Markov Property and Characteristics of Estimated

Kramers–Moyal Coefficients 178
14.3.2 Relevance for a Spatial and Temporal Characterization

of the Epileptic Process 182
14.4 Conclusions 185

References 185

15 Bivariate and Multivariate Time Series Analysis
Techniques and their Potential Impact for Seizure Prediction 189
Hannes Osterhage, Stephan Bialonski, Matth

..
aus Staniek,

Kaspar Schindler, Tobias Wagner, Christian E. Elger, Klaus Lehnertz
15.1 Introduction 189
15.2 Bivariate Time Series Analysis Techniques 190



X Contents

15.2.1 Measures of Synchronization 190
15.2.2 Phase Synchronization 191
15.2.3 Generalized Synchronization 192
15.3 Information Theoretic Measures 194
15.4 Exemplary Applications 195
15.5 Multivariate Time Series Analysis Techniques 199
15.5.1 Approaches Based on Random Matrix Theory 199
15.5.2 Approaches Based on Network Theory 202
15.6 Conclusions 204

References 204

16 A Multivariate Approach to Correlation Analysis Based on Random
Matrix Theory 209
Markus M

..
uller, Gerold Baier, Christian Rummel, Kaspar Schindler,

Ulrich Stephani
16.1 Introduction 209
16.2 The Equal-time Correlation Matrix 210
16.3 Eigenvalues, Eigenvectors and Interrelations between

Data Channels 211
16.4 Random and Non-random Level Repulsion 213
16.5 RMT Measures: Motivation and Definition 215
16.6 Application to a Test System 218
16.7 Cluster Detection based on Eigenvectors 221
16.8 Application to EEG Recordings 223
16.9 Conclusions 224

References 225

17 Seizure Prediction in Epilepsy: Does a Combination
of Methods Help? 227
Hinnerk Feldwisch genannt Drentrup, Michael Jachan,
Bj

..
orn Schelter

17.1 Introduction 227
17.2 Materials and Methods 228
17.2.1 The Seizure-prediction Characteristic 228
17.2.2 Combination of Individual Prediction Methods 229
17.2.3 Patient Characteristics 231
17.3 Results 232
17.4 Discussion 234
17.5 Acknowledgments 235

References 235

18 Can Your Prediction Algorithm Beat a Random Predictor? 237
Bj

..
orn Schelter, Ralph G. Andrzejak, Florian Mormann

18.1 Introduction 237
18.2 Performance Assessment 238



Contents XI

18.2.1 General Methodology of Seizure Prediction 238
18.2.2 The ROC Curve 239
18.2.3 The Seizure-prediction Characteristic 240
18.3 Statistical Validation 241
18.3.1 The Analytic Random Predictor 241
18.3.2 Bootstrapping Techniques 244
18.4 Conclusion 247
18.5 Acknowledgments 247

References 248

19 Testing a Prediction Algorithm: Assessment of Performance 249
J. Chris Sackellares, Deng-Shan Shiau, Kevin M. Kelly,
Sandeep P. Nair

19.1 Introduction 249
19.2 Correlation between Study Design and Clinical

Application 251
19.3 Statistical Hypothesis 252
19.4 Statistical Justification 253
19.4.1 Prediction Sensitivity 254
19.4.2 False-positive Rate 255
19.5 Discussion and Conclusion 255

References 257

20 Considerations on Database Requirements
for Seizure Prediction 261
Carolin Gierschner, Andreas Schulze-Bonhage

20.1 Introduction 261
20.2 General Requirements for a Prediction Database 262
20.3 Raw Data 262
20.3.1 Annotations to Raw Data 263
20.4 Metadata on Telemetry 264
20.5 Metadata on the Clinically Defined Epilepsy Syndrome 265
20.6 Database Structure 266

References 267

21 Beyond Prediction – Focal Cooling and Optical Activation
to Terminate Focal Seizures 269
Steven M. Rothman

21.1 Introduction 269
21.1.1 Scope of the Problem 269
21.1.2 Alternatives to Permanent Resection

for Neocortical Epilepsy 270
21.2 Cooling and the Brain 271
21.2.1 Methods for Cooling 272
21.2.2 Results of Cooling Experimental Seizures 273



XII Contents

21.2.3 Future Plans for Cooling 275
21.3 Focal Uncaging for Epilepsy 277
21.3.1 Early Results with Uncaging 278
21.3.2 Uncaging BC204 Suppresses ‘Seizure-like’

Activity 279
21.3.3 Future Plans for in vivo Uncaging 280
21.4 Acknowledgments 281

References 281

22 Vagus Nerve and Hippocampal Stimulation
for Refractory Epilepsy 283
Paul Boon, Veerle De Herdt, Annelies Van Dycke, Tine Wyckhuys,
Liesbeth Waterschoot, Riem El Tahry, Dirk Van Roost,
Robrecht Raedt, Wytse Wadman, Kristl Vonck

22.1 Introduction 283
22.2 Vagus Nerve Stimulation 285
22.2.1 Clinical Efficacy and Safety 285
22.2.1.1 Randomised Controlled Trials 285
22.2.1.2 Clinical Trials with Long-term Follow-up 286
22.2.2 Safety, Side-effects and Tolerability 287
22.2.2.1 Ramping up and Long-term Stimulation 287
22.2.2.2 MRI 289
22.2.3 Mechanism of Action 290
22.3 Hippocampal Stimulation 292
22.3.1 Clinical Efficacy and Safety 292
22.3.2 Mechanism of Action 293
22.4 Conclusion 293

References 294

23 Responsive Neurostimulation for the Treatment
of Epileptic Seizures 299
Gregory K. Bergey

23.1 Introduction 299
23.2 Characteristics of Partial Seizures 299
23.3 Types of Neurostimulation 300
23.4 Current Status of Investigations of Responsive

Neurostimulation 302
23.5 Conclusion 305

References 306

24 Chronic Anterior Thalamic Deep-brain
Stimulation as a Treatment for Intractable Epilepsy 307
Richard Wennberg

24.1 Introduction 307
24.2 Anterior Thalamus DBS for Epilepsy 308
24.3 EEG Recordings 313



Contents XIII

24.4 Conclusions 314
References 315

25 Thoughts about Seizure Prediction from the
Perspective of a Clinical Neurophysiologist 317
Demetrios N. Velis

25.1 Introduction 317
25.2 Appendix: Does the EEGer Need Seizure Prediction? 321

References 322

26 State of Seizure Prediction: A Report on Informal Discussions
with Participants of the Third International Workshop
on Seizure Prediction 325
Hitten P. Zaveri, Mark G. Frei, Ivan Osorio

26.1 Introduction 325
26.2 Modality 327
26.3 Seizure Generation and Models 327
26.4 Academia and Industry 328
26.5 The Question of Seizure Prediction and its Prioritization 328
26.6 Summary 329
26.7 Acknowledgement 330

Index 331



XV

Preface

The field of seizure prediction in epilepsy has joined theoretical aspects
of time series analysis and clinical applications but has had its ups and
downs over recent years. Public perception of this field has grown and
awareness has increased of the usefulness of a clinical system based on seizure
prediction for warning and for new intervention strategies. Rigorous statistical
evaluations demonstrated that the performance of present-day available
prediction methods has to be improved to warrant a clinical applicability.

There is therefore reason to reflect on our understanding of the mechanisms
underlying interictal–ictal transitions and to analyze the factors limiting the
present-day performance of algorithms. The hope is that a better understanding
of mechanisms contributing to the variability of cerebral dynamics will offer
new chances to improve prediction methods.

In parallel, new intervention devices are being developed which could greatly
profit from the effectiveness of closed-loop systems based on seizure prediction.
The analysis of intervention techniques resetting the dynamics of the preictal
and early ictal period may also offer opportunities to better understand
preictal and ictal dynamics, thereby giving impetus to the development of new
prediction approaches.

This book comprises a wide range of current topics in the field of seizure
prediction ranging from basic mechanisms to clinical applications. This
covers the whole spectrum of studies from modeling neuronal networks
in silicon to closed-loop intervention strategies. We greatly appreciate the
fact that leading scientists from various fields including electrophysiology,
computational neuroscience, mathematics, statistics, time series analysis,
engineering, physics and clinical experts who have participated in the 3rd

International Workshop on Epileptic Seizure Prediction in Freiburg, Germany,
have contributed to this book. It presents an up-to-date survey of the state
of the art in seizure prediction including related research areas. This book
provides guidance for all those working on seizure prediction, from students
to experienced investigators.

For help with the layout of the book we would like to thank Dr. Michael
Jachan, Hinnerk Feldwisch, David Feess, Wolfgang Mader, Jakob Nawrath,
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XVI Preface

and Raimar Sandner. Moreover, we would like to thank Kathrin Henschel,
Ariane Schad and Raimar Sandner for the design of the cover.

Freiburg Björn Schelter, Jens Timmer,
January 2008 and Andreas Schulze-Bonhage
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Fig. 4.3 Progression of Granger causality analyses through a single seizure event. The bottom
electrode voltage traces are from four of the 32 electrodes from each of the four major hippocampal
regions including the L-CA1, L-DG, R-CA1, and R-DG. The Granger analyses in panels A through
F correspond to the red shaded windows of data highlighted over the electrode traces (A through
F, respectively). In each Granger causality plot the driving brain area (source) is on the y-axis
and the target area (response) is on the x-axis. For example, the driving influence from the R-DG
to the L-CA1 in panel D is located in the upper left corner of the plot. The magnitude of the
Granger causality interaction is represented by color ranging through blue (near zero), light blue,
green, yellow, to red (highly causal). The interictal activity about 15 seconds prior to seizure in
panel A shows a strong interaction within the L-CA1. Stage 1 in panel B shows this relationship
increasing and spreading into the L-DG as well. Stage 1 is the beginning of the tonic behavioral
state for the rat that persists until the Stage 4 transition. This driving influence from the CA1
to the DG is abnormal and persists until the Stage 4 transition. Panel C shows a directional
transfer in Stage 2 from the left hemisphere to the right hemisphere. These transfers reverberate
directionally several times across hemispheres. Panel D shows intrahemisphere activity common
to Stage 3. Panel E shows across the board synchronization for the entire array for the ‘transition
stage’ or Stage 4. Stage 4 is called the transition stage because behaviorally the rat moves from
tonic to clonic activity and the primary driving relationship transitions from CA1 driving DG to
DG driving CA1. Panel F shows activity from Stage 5 after the transition. In this stage the rat
exhibits clonic behavior marked by rhythmic shaking of the limbs. (This figure also appears on
page 51.)
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Fig. 4.5 Probability maps of coronal images
of a control and an epileptic hippocampus.
The upper left corner shows the correspond-
ing reference images where the rectangle
regions enclose the hippocampus. In the
control hippocampus, the molecular layer
and stratum radiatum fiber orientations par-
alleled the apical dendrites of granule cells
and pyramidal neurons, respectively; whereas
in the stratum lacunosum, moleculare ori-
entations paralleled Schaffer collaterals from
CA1 neurons. In the epileptic hippocampus,

the overall architecture is notably altered;
the CA1 subfield is lost, while an increase
in crossing fibers can be seen in the hilus
and dentate gyrus (dg). Increased crossing
fibers can also be seen in the entorhinal
cortex (ec). Fiber density within the statum
lacunosum moleculare and statum radiale is
also notably reduced, although fiber orien-
tation remains unaltered (from NeuroImage
37 (2007) 164–176, used with permission).
(This figure also appears on page 57.)
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Fig. 6.1 Recurrent cortical activity is gen-
erated by a balance of excitation and in-
hibition. (a) The prefrontal cortical slice
maintained in vitro spontaneously generates
slow oscillations. Simultaneous extracellular
multiple-unit (MU) recording and intracel-
lular recording from a layer V pyramidal
neuron reveal the two intermittent states; the
Up and Down state. The action potentials
are truncated. (b) Voltage-clamp recording
demonstrates that the Up state currents
have a reversal potential around −30 mV.
(c) Averaged currents during the Up state at
holding potentials from −70 to +30 mV. Sev-
eral raw current traces at +30 mV are shown
with the average for comparison. The neuron
was recorded with sharp electrode filled with
CsAc and QX314 to minimize the contribu-
tion from K+ and Na+ currents. (d) Reversal

potential is relatively stable during the Up
state. (e) Calculation of the total conduc-
tance (Gtotal), excitatory (Ge) and inhibitory
conductance (Gi). Note the relationship be-
tween the intensity of multiple unit activity
and the changes in these conductances.
(f) Linear relationship between Ge and Gi
indicates the proportionality between excita-
tion and inhibition. (g) Relationship between
the average intensity of MU activity and the
amplitude of Ge and Gi. In this neuron, in-
hibitory conductance lagged the excitatory
conductance as the network transitioned
into the Up state. Following the onset of the
Up state the Ge and Gi were proportional
and correlated strongly with the intensity of
MU activity recorded locally. (Figure repro-
duced from 22.) (This figure also appears on
page 87.)
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Fig. 7.7 rPCI as function of time preceding
a seizure. Illustration (averages of six data
from six patients shown in box plots) of
the time-course of the rPCI (horizontal axis)
in relation to the time to the next seizure
(vertical axis, hours). The lower panel is a
pseudo-color and contour plot of the predic-
tion error rates, with respect to predicting a

seizure within a certain time, as a function
of the rPCI threshold (vertical axis) and
the prediction horizon (in hours, horizontal
axis). Note, for example, that for values of
rPCI > 0.6 it may be predicted with 80 %
accuracy that a seizure will occur in less
than 2 h. (Adapted from 25.) (This figure
also appears on page 105.)
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Fig. 8.3 (a) Grid used in recording ECoG
signals. (b) Referential ECoG during a 5 s
epoch colored according to mean phase syn-
chronization level between the respective
channel and all other intact contacts. (c)
Graphical depiction of the bivariate phase
synchronization measure between all pairs

of channels during this epoch, with color
and linewidths corresponding to phase syn-
chronization level. (d) Illustration of the
most significant pair-wise synchronization
within the epoch. (This figure also appears
on page 113.)
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Fig. 10.1 Examples for the induction of
spatial-temporal patterns in an excitable
medium (20 FitzHugh–Nagumo oscillators)
due to a perturbation of the first oscilla-
tor. The range of amplitude values of this
medium is encoded with colors ranging
from blue (minimum amplitudes) to red
(maximum amplitudes). (b) A noisy signal

containing a profound rhythmic compo-
nent leads to coherent periodic patterns. (a)
Only few excitation waves are induced if the
medium is perturbed with a non-periodic
or, in general, a non-correlated signal (here
white noise). (This figure also appears on
page 136.)
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Fig. 10.2 (a) Spatial-temporal pattern
induced in an excitable medium (20
FitzHugh–Nagumo oscillators due a per-
turbation of the first oscillator with an EEG
signal (b). The range of amplitude values of
this medium is encoded with colors rang-
ing from blue (minimum amplitudes) to red

(maximum amplitudes). The EEG signal was
recorded intracranially from a patient suf-
fering from medial temporal lobe epilepsy.
Data were sampled at 200 Hz within the fre-
quency band of 0.5–85 Hz using a 16 bit
analog-to-digital converter. (This figure also
appears on page 137.)
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Fig. 10.5 Across-subject generalization prop-
erties of the adaptive CNN-based concept
of measuring the strength of generalized
synchronization. Color-coded ROC-areas
obtained from numerically derived (upper
row) and approximated (lower row) profiles
of the symmetric nonlinear interdependence
Ns for all electrode combinations. Black dots
indicate a significant ROC-area value (using

19 seizure time surrogates) for a given elec-
trode combination. Data from a single chan-
nel combination from patient #1 was used
for optimizing the CNN. This optimized
CNN was used to estimate NCNN

s values for
the remaining channel combinations in this
patient, and for the data from patient #2
and #3. Arrows indicate seizure onset area.
(This figure also appears on page 144.)
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pass filtered data (80–250 Hz) show that
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Unpredictability of Seizures and the Burden of Epilepsy

Andreas Schulze-Bonhage, Anne Kühn

1.1
Introduction

About 0.8 % of the world’s population suffer from epilepsy. The classical defi-
nitions [1] of epilepsy deem the ‘spontaneous occurrence’ of recurrent seizures
to be essential for a seizure disorder to be diagnosed as ‘epilepsy’. Spontaneous
seizures stand in contrast to situation-related seizures which are thought to be
triggered by precipitants of the ictal event. The term ‘spontaneous’ reflects our
present lack of understanding about the mechanisms underlying interictal–ictal
transitions. Indeed, the relative contribution of genetic make-up in determin-
ing the individual ‘seizure threshold’, of intrinsic fluctuations in EEG dynamics,
and of external factors, toward the development of an ictal state are unknown.
It follows from this that it is currently not possible to predict the critical time
points at which the interictal–ictal transition and the manifest ‘seizure’ take
place.

Overt symptoms in epilepsy are virtually absent during the interictal period
(as long as no elaborated diagnostic procedures are performed). This means
that patients might be thought to suffer from the disease only during the
brief paroxysmal episodes. A mean seizure frequency of three such events
per month in the average adult pharmacoresistant patient [2] and an average
seizure duration of 1–2 minutes [3–5] corresponds to a symptomatic period
that effectively lasts less than one hour per year. Even if impairments during
the postictal period are taken into consideration, most epilepsy patients are in
a functional interictal state without obvious impairments for 95–99 % of the
time.

Despite the relatively low percentage of absolute time in the ictal state, the
unpredictability of seizures still overshadows the life of most epilepsy patients.
The simple fact of not knowing when an interictal–ictal transition may occur can
greatly accentuate the subjective impact of potentially imminent seizures on the
patient’s everyday life [6–10]. Seizure unpredictability has major implications for
patients, including its impact on medical diagnosis, its current role in determining
the therapeutic approach, and its practical clinical consequences for the patients,

Seizure Prediction in Epilepsy. Edited by Björn Schelter, Jens Timmer and Andreas Schulze-Bonhage
Copyright  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40756-9
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ranging from the risk of complications secondary to epileptic seizures to socio-legal
constraints and psychiatric comorbidity of the disease.

1.2
Medical Implications of Unpredictability

1.2.1
Diagnostic Uncertainty

Based on the intermittent character and brief duration of epileptic seizures,
the patient will meet a physician in the vast majority of cases in the interictal
state only, even if treated for years. This may delay or considerably reduce the
chances of correct diagnosis. This is particularly true when additional features
of epileptic attacks, such as partial or complete loss of consciousness during
a seizure and retrograde amnesia for ictal events, render it difficult to obtain
sufficient circumstantial information on the paroxysmal events, from the patient’s
history [11]. Documentation and analysis of paroxysmal events using video-EEG-
monitoring is the gold standard for determining the diagnosis of epilepsy [12–14],
but the unpredictability of the events may make this diagnostic method unfeasible
in cases with low frequency.

1.2.2
Treatment Options

Whereas in other paroxysmal diseases, such as migraine, an effective acute
intervention is possible in the early phase of an attack, the brief duration of
most epileptic seizures places a severe limitation on the potential effect of
acute treatment. Medical treatment will not take effect if systemically applied
before a seizure has spontaneously ended because of the pharmacokinetic delays
between application and efficacy at their targets associated with drug absorp-
tion and distribution. Brain stimulation offers advantages in this respect. But
at present, stimulation is only used, albeit widely, in the form of vagus nerve
stimulation, which can be interactively triggered by the patient him or herself
or another person by using a magnet, once the clinical symptoms become
overt [15]. So far, the efficacy of ictal vagus nerve stimulation has yet to
be studied in detail in the human; limited efficacy may be related to rapid
spread of ictal activity, particularly if clinical seizure onset precedes its activa-
tion [16]. Rapid detection methods may provide new opportunities in a closed-loop
setting [17].

The unpredictability of seizure occurrence generally results in the treatment
being performed continuously over time in order to prevent interictal–ictal transi-
tions. In treatments using brain stimulation via the vagus nerve or directly using
intracranially implanted depth electrodes, more or less continuous stimulation
patterns with variable duty cycles are applied [18,19]. The vast majority of patients
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have to take medication every day over a period of years, independent of actual
seizure frequency. As the aim is to achieve a steady drug concentration at the target
site, many drugs require an intake of at least twice a day, in some cases up to
four times a day, to avoid breakthrough seizures [20], which may pose problems
for patient compliance [21]. Drug level fluctuations in the case of irregular intake
or of intercurrent alterations in resorption, metabolism or pharmacodynamic
interactions may themselves trigger ‘withdrawal’ seizures [22–25].

The unpredictability of seizure occurrence is not the only burden for patients
because of the regular intake requirement of antiepileptic medication. A contin-
uously high level of antiepileptic medication is necessary for an optimal control
of seizure frequency but is often accompanied by side effects. These typically
encompass unspecific CNS-related effects like tiredness, dizziness, blurred vision
or headaches, but may also include more specific impairments in cognition includ-
ing difficulties with attention, concentration or language functions [26]. In turn,
such dose-dependent side effects during continuous intake often place constraints
on the maximal efficacy a drug can achieve; the need for continuous long-term
administration thus affects both efficacy and tolerability of present-day pharma-
cotherapy. Another problem related with the continuous long-term treatment is
the loss of efficacy in certain drugs (e.g., benzodiazepines) which are effective
only in an acute setting but not for a protracted period, this being due to the
development of tolerance [27]. At maximally tolerated dosages with continuous
systemic drug administration, about one third of current epilepsy patients con-
tinue to have epileptic seizures and are regarded as ‘pharmacoresistant’ [28].
Seizure prediction would therefore open new avenues for drug treatment; for
example, using short-acting drugs like lorazepam, or the transient application
of high drug dosages for acute seizure abortion which cannot be used in the
long term.

1.2.3
Physical Risks

Patients with epilepsy frequently suffer from seizure-related injuries [29–31].
These result in part from the loss of control over the motor system during a
seizure, as in the case of falls during atonic or tonic seizures. Often, a limited
reactivity to external stimuli plays a major role in epilepsy-related injures. The
loss of consciousness or delayed reactivity may therefore lead to an increased
accident risk of patients exposed to demanding road traffic, particularly if there
is no preceding warning symptom [29]. Similarly, the risk of accidental physical
harm is increased in a spectrum of sport activities [32]. Even at home, the
risk of sustaining seizure-related injuries is greatly increased during everyday
activities; examples of these are increased frequencies of burns during cooking or
showering [33, 34], or an increased risk of drowning in the bathtub [35], which
is a major cause of death in epilepsy patients. The absence of any warning signal
preceding a seizure may in fact increase the risk of accidental physical harm
considerably.
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1.2.4
Risks Associated with Continuous Long-term Antiepileptic Treatment

Although most antiepileptic drugs are remarkably well tolerated over many years,
there is a spectrum of substance-dependent risks associated with continuous long-
term application. The relative importance of such side effects may be different
depending on age. Cognitive side effects of phenobarbitone and pro-apoptotic
actions of several drugs may be particularly important in the developing brain [36],
the hormonal effects of valproate [37] may have their greatest impact in fer-
tile females, and the induction of ostepenia by enzyme-inducing drugs [38, 39]
may play a particular role in increasing the risk in the elderly for the devel-
opment of pathological fractures. Other side effects of chronic intake like the
development of cerebellar atrophy and polyneuropathy with phenytoin [40, 41],
disturbances of hormonal metabolism [42], the induction of mood disorders by
several drugs [43] and the development of visual field constrictions with vigaba-
trin [44] are consequences of long-term intake and pose problems at any age.
The task of controlling the development of side effects related to long-term ther-
apy imposes considerable costs on the healthcare system, even if these effects
are as rare as certain idiosyncratic reactions, like liver failure or bone marrow
aplasia.

1.3
Psychosocial Consequences of Unpredictability

The unpredictability of seizure occurrence has psychological and social conse-
quences that are often closely interrelated. Seizures that reoccur frequently and
unpredictably are accompanied by a patient’s objective loss of control associated
with the reduced ability to steer motor behavior and by the subjective loss of control
associated with feeling overwhelmed by the effects of the disease. This experience is
particular to epilepsy, the consequences of which are reflected in the psychological
concept of ‘locus of control’ and in the development of psychiatric symptoms of
anxiety and depression that have, in turn, social implications.

1.3.1
Loss of Control

The concept of ‘locus of control’ reflects the cognitive style of attributing events
and actions to either internal or external factors. Internal factors encompass
the person’s own behavior, abilities or characteristics, whereas external factors
include chance or misfortune on the one hand and actions of other persons on
the other. This psychological concept thus deals with an individual’s tendency
to perceive events as being controlled either by themselves or by external forces
[45]. This idea was originally formulated by Julian B. Rotter and recognises the
importance of the individual’s perception of causality as attributable to both
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intrapersonal determinants and the social context of behavior. Individuals tend
to categorise situations according to their perception of success or failure and,
in particular, according to the reason for their outcome. Depending on the
individual’s perception of causality, an internal locus of control reflects the belief
in a positive reinforcement by his or her own action; whereas an external locus
of control is associated with the expectancy of reinforcement by chance or by
uncontrollable factors – as would apply in the case of unpredictably occurring
seizures.

The concept of locus of control is crucial for achievement motivation and
actions and for emotional reactions to social events. It may therefore influence
compliance, in terms of outpatient attendance at epilepsy clinics and regular
intake of antiepileptic medication, and be a contributory factor particularly in the
occurrence of depressed mood and anxiety. Coping strategies and the well-being
of patients with chronic diseases are generally associated with perceived locus of
control [46], though not only in patients with epilepsy [47, 48]. Children with
epilepsy are, already at this early age, more likely to attribute control of events to
external factors than are chronically ill children with diabetes or healthy controls.
Children with epilepsy show also a lower self-esteem and a higher level of anxiety
compared with their peers [49, 50].

Clinical research uses condition-specific locus of control scales like the Multidi-
mensional Health Locus of Control scales by Wallston and colleagues [51]. Health
locus of control mirrors the patients beliefs regarding perceived control over the
disease and determines health-related behavior. The Multidimensional Health
Locus of Control (MHLC) scale comprises three subscales: internality (I-HLC),
chance (C-HLC), doctors and powerful others (P-HLC) [52]. Studies examining
the attitudes of patients with epilepsy revealed weak perception of internal and
strong perception of external health locus of control [50, 53, 54]. This pattern of
internality and externality may result in a less effective adaptation of these patients
with epilepsy to their illness and a lower engagement in beneficial health behavior
and active coping strategies [54].

Recent studies additionally addressed associations between locus of control and
self-efficacy or self-confidence, showing that a patient’s internal locus of control
correlates with his or her self-efficacy. Both are described as mastery variables
influencing the patient’s quality of life [55] and as predictors for psychological
distress [56]. Accordingly, happiness with life and self-confidence are particularly
low in patients with high seizure frequency [57].

Even though most patients with epilepsy do not feel that they have control
over their seizures, more than fifty percent of patients believe that they can
identify seizure precipitants like stress and fatigue correctly, and many have
developed strategies by which they try to prevent occurrence of seizures or to
abort them [58, 59]. Self-control of seizures would ‘elevate’ the individual to the
position of being able to regulate events and this shift in control expectancy
may likely have a positive psychosocial impact. ‘High controllers’ and ‘low
controllers’ can thus be distinguished according to their belief in their ability
to exert control over their seizures, and this, again, correlates with scores on
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health locus of control scales [53, 60]. Importantly, the degree of self-perceived
seizure control practically manifests itself in patients who seek low-risk-for-seizure
situations, avoid high-risk-for-seizure situations, and make attempts at seizure
prevention.

1.3.2
Problems with Coping Strategies

Strategies such as seeking out low-risk-for-seizure situations and avoiding high-
risk situations are considered behavioral coping strategies. These correspond at
a cognitive level with propositions like ‘Try to maintain some control over the
situation’ or ‘Hope things will get better’ [61], and may lead to a search for
information, contact with other patients and support groups, and to keeping a
seizure diary [62]. Whereas coping strategies may activate patients’ resources and
contribute to psychosocial adjustment and health [46], avoidance behavior may
have negative social implications. Feeling stigmatised, patients with epilepsy are
often ashamed of having publicly ‘displayed’ unpredictable seizures, and they
may therefore tend to avoid leaving home. This can result in social withdrawal,
isolation, lack of positive social interaction and experience, and, finally, in a loss of
self-efficacy and a decline in quality of life.

1.3.3
Depression and Anxiety

Depression and anxiety are the most prevalent psychiatric disorders in adults
with epilepsy [63] and already appear in one-third of children suffering from
epilepsy. Both depression and anxiety may result in suicidal ideation and behav-
ior, even in childhood [64]. About thirty percent of adult patients with epilepsy
report suicide attempts [65], and the suicide rate of epilepsy patients is at least
three times higher than that of the general population [66, 67], particularly in
women [68]. Loss of control is a major psychological factor leading to depres-
sion and anxiety [54, 59]. Epilepsy patients have low internal control beliefs and
medium beliefs in the role of chance. The patient’s tendency to attribute power
to others correlates with the degree of anxiety. Depressivity is related with a more
external attributional style and with loss of internal control beliefs [46,69,70]. This
corresponds to the learned helplessness model of depression by Seligman [70].
Herein, the symptoms of depression such as passiveness, cognitive deficits, and
problems with self-esteem, are due to a lack of contingency between a person’s
behavior and its consequences [71]. Unpredictably occurring seizures, particularly
if accompanied by loss of motor control or consciousness, are paradigmatic
for such a helpless situation. Correspondingly, patients with pharmacoresis-
tant temporal lobe epilepsy undergoing surgical therapy show, preoperatively,
a significant relationship between self-reported depression and external locus of
control [72]. Postoperatively, the early anticipation of seizure freedom may already
improve mood.
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1.3.4
Immobility and Vocational Restrictions

The unpredictable occurrence of seizures results in the imposition of driving
restrictions on epilepsy patients, necessarily so because the patient represents a
danger to him or herself and to all other traffic participants. Most patients with
epilepsy are therefore wholly reliant on public transport or on their personal social
environment. Immobility may lead to vocational problems due either to problems
accessing the place of employment or to driving a car being a job requirement [73].

Vocational restrictions may also be encountered by patients as a result of many
indirect consequences of seizure unpredictability. The occurrence of seizures may
be stigmatising in itself, but cognitive impairments related with the disease and
side effects of antiepileptic medication often also place limitations on a patient’s
level of work performance and achievement. More than one-third of patients
with active epilepsy are unemployed, while this applies to about ten percent of
patients in remission. This serves only to heighten the dependency on the social
security system [57] and to reinforce the feeling of subjective handicap. The range
of vocational possibilities depends on seizure severity: the unpredictable loss of
consciousness, falls, inadequate behavior and loss of motor control are particularly
unfavorable [74].

Learned helplessness

Anxiety

Low self-
esteem

Sports
accidents

Fractures

Burns

Drowning

Cognitive
impairment

Treatment-emergent
side effects

Low
mobility

Stigma-
tization
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restrictions

Isolation

Avoidance
behavior

Depression
suicide

Loss of control

Social
impair-
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Physical
risks

Continuous long-term
treatment

Unpredictability

Fig. 1.1 Consequences of seizure unpredictability in epilepsy patients.



8 1 Unpredictability of Seizures and the Burden of Epilepsy

1.4
Conclusion

The development of techniques designed to predict epileptic seizure occurrence
could make a considerable contribution to improving the well-being of patients in
all areas discussed here and summarised in Figure 1.1. Progress in this field could
facilitate medical diagnosis, and new timely drug delivery or stimulation techniques
could be specifically targeted to intervene in the preictal brain dynamics that lead
to a seizure. Intermittent therapy could offer major advantages both in efficacy and
in long-term tolerability. Finally, reliable warning systems would reduce patients’
risk of physical harm, might offer new windows of occupational opportunity and
leisure activities, and could contribute to a change in the patient’s perception of
external locus of control, the feeling of helplessness and to secondary psychiatric
problems.
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2

The History of Seizure Prediction

M. Jachan, H. Feldwisch genannt Drentrup, B. Schelter, J. Timmer

2.1
Introduction

Seizure-prediction methods, which are based on EEG recordings only, could be
an integral part of future therapeutical devices in epilepsy. The current focus of
research is on a seizure-control system which can suppress an upcoming seizure
(closed-loop intervention), or at least warn the patient prior to an expected event.
However, this goal seems to be very far off but important progress has been
made in neurology, biology, network modeling, microsystems engineering, and
time series analysis. The state of the art in seizure prediction is that, to date, a
clinically applicable seizure-prediction algorithm does not exist, but several studies
have shown that one can in fact predict seizures significantly better than a random
predictor. Much too optimistic results obtained in the last two decades have been
shown not to be specific for seizure precursors, resulting in frequent false alarms
of the methods. A patient will certainly not accept a seizure-control system which
produces too many false alarms, because it will hamper the patient instead of
helping him. This review chapter presents the history, the current state of the
art, and also an outlook on future developments in seizure prediction; a research
field which has gained much attention in the last thirty years. We discuss the
possible existence of a preictal phase, review several-prediction methods, elaborate
on statistical evaluation, address open problems and caveats, and discuss the design
of seizure-prediction studies, referring to the chapters of this book contributed by
specialists in the field.

2.2
Motivation

Epilepsy is one of the most common neurological disorders with a prevalence
of up to 1 % of the world’s population. Quality of life is severely affected due
to the sudden and unforeseeable occurrence of epileptic seizures. Not only are
many patients not allowed to drive a car and have severe problems in finding
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appropriate employment, but also other parts of their daily lives, such as sports,
social aspects, etc., are influenced. Approximately two-thirds of epilepsy patients
can become seizure-free by continuous anti-convulsive medication, whereas one-
third continue to suffer from seizures due to non-effectiveness of the therapy
at tolerable doses. For a fraction of these medical refractory patients, resective
brain surgery is an adequate cure. For this aim the seizure-generating brain area
can be localized first by a simple diagnostic means (on-scalp EEG, semiology of
the seizure). An exact localization of the seizure focus can be strongly supported
by functional medical imaging techniques and intracranial long-term video-EEG
monitoring. Minimal-invasive surgery techniques allow for a precise placement
of intracranial EEG electrodes. More than one hundred channels of EEG can be
acquired simultaneously and are used for focus localization by visual inspection.
After the focus has been identified by correlating imaging, video, EEG, and possibly
other information, it can be removed by computer-aided brain surgery. Also, care is
taken to predict possible shortcomings of functionality of the patient. Most resected
patients become seizure-free (about 70 %) or experience a certain alleviation.

For the residual amount of epilepsy patients (25–30 %) no sufficient treatment
is currently known. This group contains patients suffering from a generalized
epilepsy, where surgery is impossible, as well as patients with a focal epilepsy who
cannot be operated for a spectrum of reasons. Thus, for the latter group of patients
who do not achieve complete seizure control, new therapeutic methods have to be
set up [1, 2].

2.2.1
The Need for a Seizure-prediction Device

From the earliest time of EEG analysis there has been interest in finding EEG
patterns characteristic for and preceding epileptic seizures. In the seventies of the
20th century, physicists, physicians and engineers have addressed the issue of
predicting an upcoming seizure by use of the patients’ EEG recordings (see the
review articles [3–6]). Either from surface or intracranial EEG, certain measures
which are supposed to be able to detect an assumed preictal state can be derived. An
alarm generated by such a seizure prediction device can be utilized to simply trigger
a warning for the patient, or, for more advanced methods, to trigger a closed-loop
intervention system (see Figure 2.1). Such a closed-loop intervention could be
based on the injection of fast-acting medication, on electrical stimulation of the
brain [7], or on other intervention techniques, e.g., cooling of the epileptogenic
area [8] (cf. also Chapter 21 of this book). It is expected that temporally and spatially
targeted drug application can also be effective for patients who are refractory up
to now, because with a much lower dosage a much higher local drug level can
be achieved. Also present-day available stimulation techniques, like vagus nerve
stimulation, could be specifically triggered by a seizure-prediction device. Electrical
stimulation of brain structures has proved to be highly effective against other
neurological diseases such as tremor; thus the question arises of whether seizure
control can be achieved by deep-brain stimulation for epilepsy patients.
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in more advanced methods, automatic coun-
termeasures can be applied which prevent
the evolution of the seizure.

We next discuss the terms: (i) seizure detection; (ii) seizure anticipation; and
(iii) seizure prediction in more detail [5]. If an alarm is generated at the beginning of
or during the seizure, we speak about seizure detection [9–11]. Detection methods
can be of use for offline analysis of EEG data as well as for seizure-abortion devices.
However, here we will focus on the prediction of seizures. If a precise horizon of
seizure occurrence cannot be stated, one speaks about seizure anticipation. Seizure
prediction means to determine its occurrence in advance with a certain temporal
precision called the occurrence period. In addition, the expected event may not
occur immediately after the alarm, because this would not be a true prediction,
but rather a detection. The time window starting at the alarm and ranging to
the earliest allowed occurrence of the seizure may be called the warning or
intervention time [12, 13]. For epileptic seizure prediction, meaningful intervention
times range from several seconds up to several hours. Shorter intervention times
might be sufficient for warning devices, where it is necessary for the patient to have
some minutes before the actual seizure onset to stop a dangerous activity. Also, for
triggering brain stimulation, relatively short intervention times may suffice. Longer
intervention times are appropriate for pharmacologically acting seizure-prevention
devices, to ensure that injected drugs arrive at their targets and become effective.
Usually, the terms prediction and anticipation are used interchangeable, but here
we are going to use the term prediction only.

Having the outline for an automatic seizure prediction or prevention device as
described above, the question arises of how it can act for the patient in a practical
and safe way. Clearly, the patient needs to carry sensors for long-term monitoring of
brain activity and an effector in closed-loop treatment systems. As a first idea, people
came up with surface-EEG-based analysis systems. Neurosurgical implantation of
deep-brain stimulation devices, as well as vagus nerve stimulator implantation have
evolved to relatively safe methods and both open-loop and closed-loop implantable
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devices have been available for years. An EEG sensor, perhaps including chemical
or electrical actors, could be implanted permanently in the identified brain region,
and a control and supply device, perhaps including a drug reservoir, could be
connected from the trunk by subcutane wiring. Such an implanted solution may
not only be the ultimate cure for untreatable patients, but may also offer advantages
over existing treatments for other patients. However, a necessary condition for the
realization of such a device is the ability to accurately predict the patients’ seizures.
The heterogeneity of the disease of epilepsy, the complexity of the human brain,
and the unavailability of intracranial data from healthy control subjects render this
goal ambitious.

2.2.2
The Assumed Preictal Phase

Ictogenesis could take place in two different scenarios, either abrupt or gradual
[14–16]. A completely unforeseeable and sudden initiation of a seizure, which is a
suitable scenario for seizures from a generalized epilepsy, would not allow for its
prediction at all. The brain would change immediately from the stable interictal
state to the unstable ictal state that is characterized by paroxysmal occurrence of
synchronous discharges [5]. If a seizure was generated gradually, e.g., by evolution
of the stable brain state into a seizure-prone state, a prediction would in principle
be possible. A sudden or gradual change of internal dynamics could modify the
threshold for seizure generation and could make the brain vulnerable to seizures.
This evolutionary phase is usually termed the preictal phase. The second gradual
scenario is more appropriate as clinical prodromi are felt by about 6 % of the
patients, on average, 90 minutes prior to the seizure [17]; thus they occur at similar
time horizons prior to seizures as predictive EEG changes have been reported
using methods from time series analysis [4]. Another type of clinical precursor
often felt or experienced immediately before the seizure from patients suffering
from a focal epilepsy, are called auras. An aura represents ongoing epileptic activity
only in parts of the brain and causes subjective symptoms, such as psychic or
sensory feelings [17]. Preictal phenomena can be of different nature, depending on
the affected brain area and they might or might not be reproducible.

We next review some results from EEG analysis which suggest the existence of a
preictal phase. Due to the fact that an epileptic seizure is generated by pathological
hyper-synchronous firing of neurons, changes of synchronization between EEG
channels in the preictal phase have been investigated [18]. Another approach to
detect the preictal phase is to compare the actual EEG to a preselected neutral period
showing no epileptiform activity [19]. Other findings support the fact that seizure
precursors, i.e., localized prolonged bursts of complex epileptiform discharges,
may be present up to seven hours in advance of its onset [20]. As a final example,
we mention the occurrence of high-frequency oscillations with a frequency of up
to hundreds of Hertz and of short duration [21–24] in the epileptogenic area or
possibly prior to a seizure (see also Chapter 13).
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Given the wide range of types of epileptic seizures, the question arises of
whether all of them can be predicted in principle. Reflex epilepsies, where seizures
are triggered by external stimuli such as light, sound, touch, etc., are not in the
focus of seizure prediction. The seizure-prediction community focuses on patients
suffering from focal epilepsies for two reasons: because there is strong evidence
that these seizures can be predicted; and intracranial data are available almost
exclusively from such patients. Attention has to be paid in classifying seizure types
according to localization, cause of the disease; e.g., tumors, lesions, anomalies of
the brain tissue, toxic brain effects, and whether the seizure becomes generalized
or not. Another particular problem is posed by electrographic ictal events which
remain subclinical. At present these events are generally not targeted by seizure
prediction algorithms and their evaluation, although identical mechanisms may
underlie their generation.

The hypothesized preictal state has thus been characterized by clinical as well as
by many algorithmic methods which are based on physiological and pathological
findings. Another view of preictal phenomena assumes a phase of increased
probability of seizure occurrence; thus not every such preictal phase needs to be
accompanied by a seizure manifestation [25]. The occurrence of seizure clusters,
i.e., several seizures within a short period of time, can also be explained by the
existence of a state of increased seizure probability. Following this idea, the problem
arises up that the detection of the preictal phase might be perfectly right, but the
specificity, in the sense of the occurrence of a subsequent seizure, is limited.

These findings on the preictal state naturally lead towards seizure-prediction
methods, which rely on the automatic detection of preictal changes in the EEG.
However, the interictal occurrence of preictal phenomena turn the design of
sensitive, as well as specific, seizure-prediction methods into a challenge.

2.3
A Historical Overview

In this section we review the conceptions of studies for seizure prediction from
EEG recordings which have been presented in the last thirty years. Research on
the predictability of seizures started in the 1970s, where mainly linear methods,
such as spectral analysis and autoregressive modeling, have been applied to detect
the preictal phase from surface recordings. It has been reported that seizures can
be predicted several seconds, minutes or hours before their occurrence [3, 5]. Also,
pattern-recognition techniques such as the analysis of spiking rates have been
applied, but they have not been shown to possess predictive value [26]. In [5],
five types of studies have been classified. The first three study types are based
on evaluation on short data segments: preictal-only studies, studies with interictal
control periods, and controlled studies. Later, continuous long-term data has been
used to run studies, which can be of retrospective or of prospective nature. The first
three types of study are from today’s point of view with the availability of modern
computational power no longer sufficient, while the latter two study types can
produce results on predictability which are of clinical interest (cf. Chapters 18, 19).
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2.3.1
Older Types of Studies

Preictal-only studies were limited to rather short data segments taken prior to
seizures due to the lack of storage and processing capabilities available some
decades ago. In the 1990s, as the theory of nonlinear dynamics evolved, several
measures characterizing nonlinear properties have been proposed. The largest
Lyapunov exponent [27] was utilized to measure chaoticity of an EEG signal, which
was found to drop before seizures. The bivariate measure mean phase coherence
has been introduced, which quantifies the relation between two EEG channels
in terms of their phase difference [18, 28, 29]. It has been reported that changes
of synchronization occur during the preictal phase. By analyzing the correlation
density in a larger group of patients it was concluded that the spatio-temporal
complexity drops in the preictal phase [30]. Other approaches were to compare the
dynamics of the actual EEG window to a fixed reference window by use of the
dynamical similarity index [19, 31] or to analyze the correlation dimension [32],
the accumulated energy [20], i.e., the running sum of the EEG variance. Later,
interictal data segments have been used to provide a control on whether the
hypothesized preictal changes also occur in interictal periods [18, 33, 34]. Studies
which took interictal control periods into account have been run on selected data
and are thus of exemplary nature but of practically limited value. Some measures
show some ability to distinguish the preictal phase from the interictal phase
suggesting the actual existence of a preictal phase. For the assessment of statistical
significance of prediction performance several approaches have been introduced.
Applied methods range from the receiver operating characteristic, the seizure
prediction characteristic [35], to surrogate-based methods such as seizure-time
surrogates [15] or the measure profile surrogates [36]. Statistical evaluation is of
central importance and has been addressed very often recently.

2.3.2
Modern Types of Studies

While the first three study types on predictability are insufficient from today’s point
of view, only long-term retrospective or prospective studies can now be accepted.
However, smaller data sets can still be valuable to introduce novel prediction
features. As both long-term recordings and sufficient hardware capabilities are
available, these more advanced study types should be the underlying conception
for current work. In 2002 several groups together created a joint multi-center
database of long-term recordings of five patients [25]. This database, created for
the First International Collaborative Workshop on Seizure Prediction (Bonn, 2002)
can be regarded as the starting point of modern research on seizure prediction.
It comprises intracranial EEG data of mesial temporal lobe epilepsy patients with
at least 48 hours duration, 30 to 80 channels from subdural strip and amygdalo-
hippocampal depth electrodes, and a minimum of three recorded seizures. The EEG
was digitized with at least 200 Hz at a resolution of 10 bit or more. All patients were
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seizure-free after surgery (Engel Class I outcome), which indicates that recordings
as close as possible to the epileptic focus were included. To make long-term data
also available for researchers without access to an epilepsy monitoring unit, we
specially emphasize the need for an international database (cf. [20]).

Studies based on larger data collectives have shown that the promising results of
predictability by EEG analysis are not specific [4, 34, 37]. Doubts have been raised
on the performance of the similarity index [35, 38], the correlation dimension
[39, 40], the largest Lyapunov exponent [41, 42], the accumulated energy [34, 43],
and the correlation density [44]. Almost all introduced measures were not able to
distinguish the interictal phase from the preictal phase if evaluation was performed
on long-term data. Reasons for this sobering result are found in the fact that the
optimization of algorithm parameters was performed on selected and too small
data sets. However, some bi- and multivariate measures have proven to be indeed
better than random level as shown in [4, 45]. Bi- and multivariate measures are
discussed in Chapters 15 and 16. It was found that preictal phenomena are not a
global phenomenon, but they are rather limited in the spatial extension, although
not restricted to the seizure-generation area [20]. Truly prospective studies were
carried out for the first time starting in 2003 [3, 46–49], but no sufficient analysis
of whether the performance is above chance level was included. The results which
have been obtained by long-term studies have nevertheless led to valuable insights
on ictogenesis, such as preictal changes of synchronization and high-frequency
content.

2.3.3
Survey of Prediction Methods

In this section we will give an overview of algorithmic seizure-prediction methods,
which have been applied up to now [4]. The dynamics of EEG signals can be modeled
in various different ways, resulting in a broad range of candidate analysis methods.
The EEG is a nonstationary nonlinear stochastic process. From a clinical point of
view, the EEG is divided into several rhythms, i.e., delta (0.5–4 Hz), theta (4–8 Hz),
alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–70 Hz) [50]. Beyond the gamma
range, the ripple band (100–200 Hz), and fast ripple band (250–500 Hz) [24, 51]
have been defined. Given the high complexity of the EEG signal, a single prediction
feature can only quantify some of its properties. A seizure-prediction method
usually maps the measured property onto a one-dimensional feature time series,
which is subsequently compared to a threshold. Either rising, declining, or changes
in the instantaneous value of the feature can be exploited to detect the preictal
phase. Thus, the EEG can be searched for many, possibly independent, causes of
epileptic seizures. Before EEG analysis can be started, one has to consider artifact
removal [52], especially in on-scalp recordings. Typical artifacts are mains noise
(50 or 60 Hz), plateaus resulting from saturation or zero-lines during periods of
disconnection and muscle or eye-blink artifacts. In intracranial recordings artifacts
are rare compared to surface recordings.
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Seizure prediction methods can be classified either into linear or nonlinear
methods or into uni-, bi-, or multivariate approaches [4]. Univariate measures
quantify the state of a single cortical region while multivariate measures quan-
tify interaction of different brain regions. All these measures are inspired by
linear and nonlinear dynamical systems theory, and they try to quantify effects
which are hypothesized based on clinical and biological results. Univariate linear
methods are, e.g., the statistical moments and the relative power of the differ-
ent EEG spectral bands (delta, theta, alpha, beta, gamma). Other measures are
based on the autocorrelation function, such as the decorrelation time. Univariate
nonlinear measures are: the effective correlation dimension; the largest Lya-
punov exponent; local flow; algorithmic complexity; and loss of recurrence [4, 37].
These measures are able to assess various dynamic properties inherent to sig-
nals originating from nonlinear systems. Bivariate linear measures are based on
the cross-correlation, or its spectral analogue, while the coherence function and
bivariate nonlinear methods are based on the phase or on information theoretic
aspects. They rely on a representation of the signals’ phase expressed by the Hilbert
transform [53] or on the wavelet transform [54]. In a practical implementation,
the measures are computed in a block-processing or sliding window fashion,
where the block length is in the range of several seconds. Smoothing of the
feature profile, mostly implemented as a median filter, seems necessary to allow
for a narrower amplitude distribution and to remove outliers, which cause false
alarms.

The time profiles of the features can be analyzed according to several evaluation
schemes [4]. To find possible global effects all features stemming from the given
channels or channel combinations can be pooled and their distribution in the
inter- and preictal phases can be compared. If, however, the seizure precursors
are present in only some channels or channel combinations, a pooling would
not be appropriate. In this case the features have to be analyzed separately in
order to find those exhibiting the best prediction power. In particular, if more
than one seizure type per patient is present, an analysis of each single preictal
phase in comparison to the entire interictal time, may give insight. Circadian
rhythms, drifts due to medication changes, and possibly other external or internal
influences may affect the baseline of the respective feature. True seizure precursors
may be small components which are buried in larger and slower fluctuations,
thus an adaptive baseline can correct for these slow changes in the feature
dynamics.

Finally, meta-parameters such as window length and occurrence period have to be
optimized to achieve maximum performance. These are the following constraints
on such meta-parameters. The window length may not be too small because most
of the features express a certain average property of the actual EEG segment;
it may not be too large because an online application can only allow for a certain
maximum delay and computational requirements usually increase with polynomial
order with the window length. Constraints on the occurrence period are given by
practical aspects of the prediction device for the patient. Very small horizons can be
appropriate for warning as well as for some intervention techniques while too-large
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horizons are impractical because the time under (false) warning should not exceed
a certain limit.

2.4
The State of the Art in Seizure Prediction

The related problem of seizure detection can, in principle, be regarded as solved,
but a complete solution is not available. Based on the inspection of spectral
power in higher frequency bands or on the extraction of characteristic waveforms,
epileptic seizures can be detected accurately as they come up [9–11]. Seizure
prediction with a time horizon of minutes to hours remains an open issue. For a
clinically applicable seizure-prediction method, the prediction performances have
to be improved considerably. However, scientific effort in the field has produced
numerous important intermediate goals, which will be reviewed in the sequel.

2.4.1
Partially Solved Issues

A central and partially solved problem in the field of seizure prediction is the
statistical evaluation of prediction schemes (cf. Chapter 18 of this book). Analysis
methods based on the receiver-operating-characteristic used to compare the feature
distributions of the preictal and the interictal phases, have been proposed [4,12,35].
Performance measures are the sensitivity, i.e., the percentage of correct predicted
seizures and the false prediction rate, i.e., the complementary specificity. Whether
the prediction performance is above chance level can be quantified either based on
an analytical random predictor [12,35], or on numerical bootstrap techniques, such
as seizure time surrogates [15]. A random prediction scheme generates alarms
either periodically or based on a Poisson process, thus not using any information
contained in the EEG. It exhibits increased sensitivity for larger occurrence periods
and larger false alarm rates. If a best feature or appropriate channels are going to be
selected from a pool of features or channels, a correction for multiple testing has to
be incorporated, which again increases the power of the random predictor. Seizure
time surrogates are a prominent method of Monte Carlo evaluation methods.
The original seizure-onset times are replaced by randomly generated seizure-onset
times, which are obtained by shuffling the original onset times while leaving the
EEG data unchanged. If the performance of the measure under consideration is
higher on the original onset times than on the surrogate times, it can be considered
significantly better than a random prediction [48, 49].

Because a certain prediction method usually exploits only one special dynamical
property of the EEG, a combination of independent methods can produce increased
performance (cf. Chapter 17 of this book). Given that two independent prediction
methods are available, their combination in the sense of a logical ‘OR’ can increase
the sensitivity, but the specificity may be decreased. If the combination is based on
a logical ‘AND’ operation, false alarms can be reduced, but an alarm is only raised
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if both methods issue an alarm within a given time frame. Thus, the sensitivity of
the ‘AND’ combination will be lower than that of the individual methods.

The incorporation of confounding side effects such as circadian rhythms, es-
pecially sleep-wake cycles [55], drug level [56], heart rate, cerebral blood flow and
other effects has been studied [5]. Taking physiological as well as environmental
side effects into account has the potential to lower the amount of false alarms
and to raise sensitivity. Much research has been performed in other areas next
to seizure prediction. Recent developments in the field of synchronization clus-
ters [57, 58] allows for the mapping of epileptogenic activity onto the brain. Also,
source-localization techniques have been applied to on-scalp EEG and their use-
fulness is critically reviewed in [59]. On the experimental side, animal models of
epilepsy have been set up [60], which are required to test and evaluate intervention
techniques. Animal models are addressed in Chapters 4, 8 and 11. Results on the
interictal/ictal transition mechanism based on statistical modeling using computa-
tional network models (see Chapters 3, 5, 7, 10, 14) have been reported [16], where
data from animal, human in vivo, and in vitro models have been utilized. Also
cellular mechanisms such as synaptic transmissions (cf. Chapters 6 and 9) have
been studied.

Neuro-stimulation in epilepsy has made huge steps forward [61], (cf. Chapters
22–24). By stimulation of different target areas in some patients a decrease in
seizure frequency has been achieved. Based on alarms raised by seizure detection,
a stimulation-based seizure abortion device has already been conceived [62]. Last
but not least, the actual seizure onset has been examined in detail and possible
trigger mechanisms have been described [63, 64].

2.4.2
Unsolved Issues

Let us now pay attention to the central unsolved problems. Until now it has not
been possible to report a successful prospective prediction of epileptic seizures
including a sound statistical analysis [5]. The proposed algorithm needs to show
prediction performance when evaluated on unselected long-term EEG data from
several patients and a posteriori information may not be taken into account. For
the establishment of high-performance prediction algorithms it seems to be nec-
essary that the nature of the preictal phase has to be explored in more detail.
The diverse results obtained by time-series analysis should be combined in an
optimal manner. On the more product-oriented side severe technical shortcomings
also have to be improved. An implantable device has very high requirements on
size, power consumption, bio-compatibility, maintenance, and reliability. Exist-
ing algorithms are run offline, usually on computer clusters, but for an on-chip
solution, computational power is an extremely restricted resource. Attention has
to be paid for channel selection to keep the amount of raw data to a mini-
mum. The lifetime of the device must be in the range of years and service
access should be enabled from an external controller, via a wireless connection.
The issue of power supply, especially for stimulation-based systems, remains
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to be solved. In the case of a chemically acting intervention system, further
issues such as drug refill and overdose prevention come into play. Future aspects
of seizure prediction in epilepsy are discussed in Chapters 25 and 26 of this
book.

2.5
Seizure Prediction in the Future

Future studies on epileptic seizure prediction will show significant improvements in
sensitivity and specificity, which need to approach the level of clinical applicability.
In particular, measures which are based on the incorporation of information
of several cortical network structures have the potential to yield the desired
improvements. Further, research on ictogenesis is assumed to deliver more insight
into the mechanisms which generate seizures, and in this way the predictability
of seizure could be improved. Concentrating on seizure prediction from the
EEG, we restate the guidelines for designing seizure-prediction studies as defined
in [5]:

• Data collective. The testing of prediction algorithms should be done on
unselected long-term recordings over several days, to incorporate all kinds
of pathological and pathophysiological states of a patient. Today, data of
duration from one to two weeks is available almost exclusively from epilepsy
monitoring units, which are recorded for focus localization. This data
can show severe dependencies on, e.g., changing drug levels to provoke
seizures. In the future, data could be gathered from patients carrying a
permanent implant. This latter situation has the potential to deliver data
stemming from a real daily-life situation as, e.g., stable medication can
be guaranteed and much longer acquisition periods are available. Further,
algorithm performance should be evaluated on several unselected patients
to avoid over-fitting of the meta-parameters.

• Assessment of sensitivity and specificity. Long-term data, comprising many
seizures, allow for the estimation of both performance measures together.
Results should be stated including the temporal parameters’ intervention
time and occurrence period. False-prediction rates (e.g., false alarms per
hour) have always to be stated together with the duration of the subsequent
occurrence period, because the false prediction rate times the occurrence
period results in the time under false warning, which is a parameter of
central importance for the patient.

• Statistical validation. The performance parameters’ sensitivity and specificity
need to be estimated from long-time recordings. Whether or not the
algorithm under consideration performs better than random has to be
analyzed using a statistical evaluation method. For this purpose, two families
of validation techniques are available: Monte Carlo simulations and naı̈ve
prediction schemes (cf. Section 2.3).
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• Algorithm training. Patient-dependent algorithm parameters have to be
optimized on a training set (in-sample) while prediction performance has
to be estimated on an independent test data set (out-of-sample), which has
not been used to optimize the algorithm. Algorithm performance has to be
reported for the test data set.

By following the above study design rules, results on the actual prediction per-
formance of the candidate method can be stated in a statistically sound manner
and a valid comparison between methods is possible. Effects related to external
influences as well as inter- and intra-subject variabilities can be studied.
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3
Impact of Computational Models for an Improved
Understanding of Ictogenesis: From Single Neurons
to Networks of Neurons
Marie-Therese Horstmann, Andy Müller, Alexander Rothkegel, Justus Schwabedal,
Christian E. Elger, Klaus Lehnertz1)

3.1
Introduction

The nervous system is a complex network composed of a huge number of
neurons [1]. The human brain contains approximately 100 billion neurons and
10 million kilometers of wiring. Neurons couple to networks. They are organized
in different morphological structures and perform different functions. Like other
cells neurons consist of a cell membrane which encloses the cytoplasm and the cell
nucleus. Neurons can transmit electrical signals over long distances. The size and
shape of neurons varies over a broad range depending on their location and special
role in the nervous system. Regardless of this variability the basic functionality is
always the same: a neuron receives input signals, processes this input, and transfers
an output signal to other neurons. Accordingly, the basic structure is the same for
every neuron. The cell body (soma) has appendages that are responsible for the
input and output of signals. A neuron usually has many input appendages (the
dendrites), and one output appendage (the axon). A neuron is typically connected
with approximately 10 000 other neurons via synapses which are located at the
end of the neuron’s axon. Generally, a negative electric potential difference exists
between the extracellular and the intracellular space (extracellular potential set to
zero) [1,2], which is caused by differences in ion concentrations between the inner
and the outer side of the cell membrane. Inputs received via synaptic connections
cause transmembrane currents that change the membrane potential, and eventually
can cause the generation of an action potential or spike ‘[. . .] an abrupt and transient
change of membrane voltage’ [3]. Action potentials can propagate along the axon to
other neurons. Time sequences of these action potentials are considered the basis
for encoding information and for communication between neurons [4].

Computational neuroscience is an interdisciplinary field of research connected
with neuroscience, applied mathematics, physics, and computer science. This
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discipline discusses neurophysiogically or neurobiologically relevant mathematical
models and simulation methods that contribute to our understanding of neural
mechanisms. It is a rapidly growing field, mainly because of the necessity of
integrating structural, functional, and dynamic approaches in the study of the
brain [5]. A number of specialized journals and textbooks (Amazon lists 48 books
when searching for the term computational neuroscience) are now available, and
there are even research institutes whose main efforts lies in setting up models of
neuronal systems. But what can we learn from computational models?

Models can form a bridge between experiments and theoretical understanding.
They can help to combine multiple observations derived from different experiments
to a compound view. Working with a model is much easier than working with living
cells in vitro or in vivo. Computational models thus provide a convenient way to
explore the impact of some mechanisms underlying normal or disturbed neuronal
functioning. This becomes especially important when the mechanism under
consideration is hard to isolate experimentally. Using models, parameter ranges
can be explored, which are hard or even impossible to access experimentally. By
evaluating a model, one can even figure out some prerequisites for certain dynamics,
such as finding boundary conditions for the synchronizability of neural networks.

The crucial question in modeling is how to find an appropriate model. But what
does appropriate mean? The answer is: ‘it depends on the problem you want to
address’. On the one hand, a model should be detailed enough to cover all important
aspects under consideration. On the other hand, it should be simple enough to
improve understanding of the underlying mechanisms. Modeling can be done with
arbitrary complexity and richness of detail. Modeling the whole brain on the level
of single neurons and synapses requires huge computational effort (see, e.g., [6]).
But even if we had a computational model that could model the signal processing
of the whole brain, which would represent a computational representation of a real
brain, what would we learn? Of course, one could conduct experiments more easily
than in a real brain, but in principal our understanding of fundamental principles
would not improve. Modeling is more than an insufficient representation of reality.
The art of modeling is to find a model that is as detailed as necessary and as simple
as possible.

Consider the probably most famous model in computational neuroscience: the
Hodgkin–Huxley model. In 1952 the ionic mechanisms underlying excitability
and propagation of action potentials were investigated mainly by Hodgkin and
Huxley [7–10] using the squid giant axon. They postulated voltage-dependent ion
conductivities of the membrane. Nowadays it is known that these conductivities
originate from voltage-gated macromolecular pores in cell membranes, called ion
channels. The electric properties of a membrane patch can be represented as
an equivalent electric circuit. The membrane separates the intracellular from the
extracellular space. Because of different ionic concentrations of the intra- and extra-
cellular space there is a voltage gradient over the membrane and the membrane can
thus be regarded as a capacitor. The membrane incorporates ion channels through
which ions can diffuse. These can be represented as resistances or conductances.
Ion channels can be in an open or a closed state, and the total conductivity of a
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membrane patch depends on the fraction of open ion channels. This fraction in turn
depends on the membrane voltage and can, in general, also be dependent on ion con-
centrations, temperature, and other factors. There exists a variety of ion channels,
and most of them are permeable for a specific ion only, e.g., sodium or potassium.

The total ionic current flowing through a patch of membrane is given by

i = c
dE

dt
+ iNa + iK + ileak, (3.1)

where iNa, iK and ileak represent the sodium current, the potassium current, and
the leak current respectively. E denotes the membrane potential, t the time, and c
the membrane capacitance. The single currents are given by

iNa = m3hgNa(E − ENa), (3.2)

iK = n4gK(E − EK), (3.3)

ileak = gleak(E − Eleak), (3.4)

where m and h represent the fraction of gating particles of the sodium and n of the
potassium channel being in a state that allows the channel to be open. ENa, EK and
Eleak are the equilibrium potentials specific for different ions. The dynamics of the
gating particles is modeled as

dx

dt
= x∞ − x

τx
, (3.5)

where x denotes the fraction of gating particles being in a state that allows the
channel to be open, x∞ denotes the equilibrium state and τx the time constant of
the dynamics. x∞ and τx are functions that depend on the membrane voltage.

The Hodgkin–Huxley model had, and still has, an important influence on
neuroscience in general and on the modeling of neurons in particular. It clearly
indicates that it is not necessary to model every single ion crossing the membrane
and the opening and closing of ion channels, but that it is sufficient to model the
statistical properties. This again shows that the choice of an appropriate scale is
important.

3.2
Single Neuron Models

According to [11] neuron models can be roughly divided into three groups. Since
the assignment of some model to a specific group may depend on the state-of-
the-art of research, the division is somewhat arbitrary. Nevertheless, it provides a
classification, which can be helpful for an overview.

• Canonical Models. These are abstract, mathematical models that only
capture some prototype features of neural dynamics in critical parameter
regimes [11]. They are mainly useful to investigate particular properties of
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the dynamical system and transitions between different dynamical regimes,
e.g., bifurcations. They have the major advantage that they can describe
systems, which are not known in detail, but from which some general
features are available. The disadvantage is that they are only applicable near
the critical regimes. A typical example is the Landau–Stuart oscillator [12],
which is the canonical model for systems near a Hopf-bifurcation.

• Empirical Models. These are models constructed from a minimal number of
phenomenological observations. For example, the McCulloch–Pitts model
[13] is the easiest model used in computational neuroscience. With this
model one assumes that neurons are bistable systems with a certain
threshold. Other popular empirical models are the integrate and fire model
and the resonate and fire model [3], which are based on the fact that spiking
neurons can act as integrators or resonators, respectively. Last but not least,
we mention the spike response models [14,15]. These models are typically used
to model the activity of large populations of neurons (see also Section 3.3)
for which the detailed dynamics of single neurons is of minor interest as,
e.g., in the Wilson–Cowan model [16].

• Comprehensive Models. These models take into account (nearly) all known
physiological facts. The most famous model of this class is the Hodgkin–
Huxley model, already mentioned above. In general, all models that are
based on the conductance of ion channels, belong to this class of models.

In the following we focus on conductance based models, since they are usually
the stating point for the investigation of neuron dynamics. In succession to such
investigations, the canonical models emerge out of a bifurcation analysis of these
models. Section 3.3 incorporates empirical models.

3.2.1
Conductance-based Models

There are a number of excellent text books dealing with this type of model. We
here mention the book of Hille [2], which provides a comprehensive account on
the biophysical mechanism of ion channels in excitable membranes. Cronin’s
book [17] presents a mathematical treatment of the Hodgkin–Huxley model, while
the textbook of Koch [1] addresses, besides the Hodgkin–Huxley formalism, various
aspects of neuronal modeling and provides an excellent and comprehensive list of
references. During the last decades several modeling tools were invented, which
allow one to conveniently build and compile Hodgkin–Huxley type models without
detailed programming knowledge. Two well known examples are NEURON [18]
and GENESIS [19].

The Hodgkin–Huxley model can serve as a general formalism for conductance-
based models. For ionic mechanisms, which have to deal with low ionic concen-
trations like, e.g., calcium, the Hodgkin–Huxley formalism can be extended to the
Goldman–Hodgkin–Katz equation, which – instead of Ohm’s law – describes the
current through the membrane. The morphology can be represented by connecting
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cylindrical membrane patches via an axial resistivity. This can be made arbitrarily
accurate but, in most cases, a simplification of the neuronal morphology to
the soma, the basal and apical dendrites, and possibly to an axon is sufficient.
Representing the real morphology with connected equivalent cylinders is called
‘compartmental modeling’. A number of such models are already available and
can be found in the model database of the NEURON Project, currently located at
http://senselab.med.yale.edu/modeldb/.

A complex hippocampal CA1 neuron model was presented by Warman and
colleagues [20]. The authors combined results from multiple observations to a
synthesized view of neuron dynamics. The resulting model served as a basis
for other studies. Among these studies we here mention the work of Stacey
and Durand [21–23] who addressed the question of whether noise can play a
constructive role in signal processing of hippocampal neurons. Neurons receive
tens of thousands of input signals. Most of them are subthreshold signals, i.e.,
signals that are too weak to elicit an action potential. A possible mechanism to cope
with this bunch of subthreshold signals is stochastic resonance [24, 25]. The term
stochastic resonance describes a counterintuitive phenomenon that can be observed
in a variety of artificial and natural, but mostly nonlinear, systems; namely an
improved detection or transmission of weak (subthreshold) signals in the presence of
noise. In this context the hippocampal region is of special interest, not only because
it is responsible for memory and learning processes [26] and therefore receives
signals from different regions of the brain, but also because the hippocampus
is crucially involved in diseases of the central nervous system, like Alzheimer’s
disease and epilepsy. Using both a computational model and experimental in vitro
studies in rats, Stacey and Durand showed that CA1 neurons are indeed able
to exhibit stochastic resonance. The model enabled them to exploit parameter
ranges that are difficult or even impossible to access experimentally, e.g., rather
high levels of noise. Moreover, they investigated stochastic resonance in a small
network of neurons under controlled conditions. Such a study is hard to perform
in in vitro slices or in vivo studies. The authors showed that model simulations
and experimental measurements can complement each other. In addition, these
studies clearly indicate that modeling can help to improve understanding of basic
principles, which may not be fully uncovered in experimental studies due to a
bunch of uncontrollable factors.

3.2.2
Single Neuron Models and Epilepsy

Studies in animal models of epilepsy and in resected tissue from epilepsy patients
provide us with a detailed knowledge of altered physiological properties of neurons
from epileptic tissue, such as ion channel dynamics, ion kinetics, gating, morphol-
ogy, synapses, or gap junctions (for an overview see [27,28] and references therein).
Despite these advances it is still an unsolved issue which of these alterations actu-
ally underly ictogenesis in humans. In addition, it has not yet been clarified how
the effects of these alterations can be distinguished from those that occur due to



30 3 Impact of Computational Models for an Improved Understanding of Ictogenesis

alterations in network properties. Bursting behavior is a striking difference between
neurons from ‘epileptic’ and from healthy tissue [29,30]. Bursting can be defined as
the firing of two or more action potentials followed by a period of quiescence [3,31].
The actual burst pattern, such as attenuation of action potential amplitude in the
course of a burst, the number of action potentials riding on top of the paroxysmal
depolarizing shift (PDS) – a long-lasting membrane depolarization–depends on
many factors (brain region, the individual cell, stimulus properties, etc.). There is a
variety of bursting neurons, both in healthy and pathological tissue. Some neurons
exhibit bursting behavior in response to a strong stimulation, others generate
bursts when being stimulated with a weak input. In some neurons bursts appear
to have a special role in synaptic plasticity and information processing [32, 33].
Bursting of single neurons has to be differentiated from bursting as a network
phenomenon.

Traub proposed whole-cell (multi-compartment) models for neocortical and
hippocampal pyramidal cells [34,35], in which ionic channels in each compartment
are represented by differential equations describing their properties. Using these
models, the author identified processes at the membrane level that may be
responsible for the generation of intrinsic epileptiform bursts in single cells.

Heilman and Quattrochi recently studied calcium-dependent bursting, in a
computational model with increasing physiological and morphological complexity,
of a hippocampal pyramidal neuron [36]. They aimed at determining the minimal
complexity needed to enable the model to show epileptiform behavior and explored
the influence of ionic mechanisms and of the morphological structure. From their
findings they concluded that epileptiform behavior resides mainly in the membrane
channels and not in a specific morphology or network interactions. However, a
more complex than point-like morphology is required to generate epileptiform
behavior.

Golomb and colleagues investigated bursting in a CA1 hippocampal neuron
model with physiologically reasonable properties [37]. They aimed at identifying
mechanisms underlying the variety of different firing and bursting patterns that
can be observed experimentally. Although three ionic channels – sodium current,
delayed rectifier potassium current, and M-type potassium current – are sufficient
for a minimal bursting model [3], the authors also investigated the impact of
the persistent sodium current. By adding calcium dynamics, calcium and calcium-
gated channels, they studied the influence of the extracellular calcium concentration
on the dynamics of their neuron model. Combining their results obtained from
experimental and from modeling studies, they concluded that bursting in CA1
pyramidal cells can be explained by a single compartment ‘square bursting’
mechanism with one slow variable, namely the activation of M-type potassium
current.

The role of potassium accumulation in generating epileptiform activity has been
discussed in the literature for many years (see, e.g., [38] and references therein). In a
recent study, Park and Durand hypothesized that spontaneous neuronal activity can
be generated by a coupling of neurons via lateral diffusion of potassium ions [38].
Using two single-compartment Hodgkin–Huxley type models the authors showed
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that this coupling mechanism can lead to self-sustained activity if one neuron
is excited by a long-lasting suprathreshold stimulus. After termination of the
stimulus both neurons fired regularly and phase-locked. Similar results could also
be obtained in a network of four cells. The authors concluded that potassium
lateral diffusion can play an important role in the synchronization and generation
of nonsynaptic epileptiform activity.

In addition to coupling mechanisms between neurons, there is now strong
evidence for the coupling between neurons and surrounding glia cells (astrocytes)
to play an important role in physiological and pathophysiological functions (for
an overview see, e.g., [39]). Using a Hodgkin–Huxley model, Nadkarni and Jung
investigated neuron–glia coupling as a possible mechanism for the generation
of epileptiform activity [40]. Upon stimulation the model neuron releases quantal
amounts of neurotransmitters, which bind to receptors of the astrocytes and trigger
the release of inositol trisphosphate (IP3). This in turn triggers the release of
calcium from internal buffers of the astrocytes. The calcium dynamics was modeled
following [41]. In addition, the authors connected the calcium concentration
in the astrocytic environment to an inward current into the neuron model.
This simplification can be regarded as a good example of abstraction, which is
necessary in modeling. The authors retained the basic effect, namely an inward
current and thus the depolarization of the membrane, but left out details, namely
calcium and calcium-gated channels. Depending on the coupling strength between
neuron and astrocyte (defined as the IP3 production rate in response to an action
potential generated by the neuron) the authors observed spontaneous oscillations
in their neuron model. Enhanced neuron–glia coupling can thus be regarded
as a possible mechanism to generate epileptiform activity, which is in line with
experimental results [42, 43]. Using a far more complex and detailed neuron
model (in terms of morphological geometry and a more realistic simulation of
ion channel dynamics) Kager and colleagues [44] recently confirmed the findings
presented in [40] and explored the electrophysiological properties which lead to
self-regenerating afterdischarges in much more detail.

These few examples show that it is important to understand the intrinsic
properties of neurons. Working with detailed models of single neurons can help us
to explore pathologic alterations in cellular and/or synaptic properties of neurons
or a small number of neurons. Such models, however, may not suffice to account
for large-scale network phenomena such as those implied in epileptic discharges.

3.3
Neural Networks

Brain dynamics, as observed on the EEG, is much more complicated than the
dynamics of single neurons. Major aspects of this complexity can be attributed to
the arrangement of neurons and of synapses between them, i.e., the underlying
network topology. As regards epilepsy, there is now growing evidence for seizures
to be network phenomena [27, 45–47], and as such they might emerge – at least
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in part – from the underlying network topology. Epileptic seizures are usually
characterized by hypersynchrony (see, however, [48–50]). From the reductionist
point of view, as early as 1975 Peskin gave a mathematical proof that two integrate-
and-fire neurons synchronize completely (i.e., the phase difference vanishes for
large times) if they are coupled excitatory [51]. Netoff and colleagues observed this
synchronization phenomenon for two neurons from a slice of rat hippocampus [52].
However, the situation gets much more complicated for more than two neurons
that are arranged in some network with a complicated topology. Moreover, in order
to derive an adequate description of large-scale epileptic phenomena it is generally
not clear how the notion of synchronization can be generalized to brain networks.
So how can brain networks be characterized? Which network topology should be
chosen when modeling epileptic phenomena? Does the network topology of an
epileptic brain differ from a healthy one? How can we differentiate physiological
synchronization, which is believed to be crucial for normal brain functionality,
from pathophysiological synchronization?

Modeling neural networks can provide some answers to these questions if it
is combined with experimental investigations on the network topology of the
human brain. Understanding seizures means to understand the circumstances
which lead to synchronization of neurons in neural networks. The investigation of
neural-network models can provide some clues as to which properties of network
topology favor synchronization. Combined with findings from an evaluation of
brain networks this can then help us to accept or reject the hypothesis that these
properties do indeed play an important role in the human brain.

When exploring network dynamics, it may not be necessary to use the most
physiological accurate neuron model available but to use a model which comprises
only the main dynamical features. The task at hand is surely not to model the whole
brain but to reproduce the observed dynamics. Both the neuron model and the
network topology have to be chosen to be as simple as possible for these features
to occur in order to improve understanding (for a methodological overview of
simulation of neural networks we refer the reader to [53] and [54]).

3.3.1
Network Characteristics

In the following we regard a neural network as a graph where the vertices are
instances of some neuron model and where connections indicate coupling between
any two neurons. When discussing network topologies it is expedient to look at
standard network characteristics from graph theory (cf. [55, 56]):

• The mean degree is the average number of in-going connections (the same
number is obtained if one takes the average over all out-going connections).

• The in-/out-degree-distribution is the distribution of the number of in-/
outgoing connections.

• The clustering coefficient describes the probability that two vertices which are
connected two a third vertex are themselves connected.
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• The mean path length is the average over all distances between every two
nodes in the graph, where distance is the length of the smallest chain that
connects two vertices.

• The highest betweenness centrality is the maximum of the number of shortest
paths that go through a connection.

These measures allow one to characterize different structural aspects of networks,
but it is still matter of ongoing discussion whether they can be related to functional
aspects of networks.

Small-world and Scale-free Networks
Although regular lattices and random graphs have been studied for many years,
they differ from many natural networks when describing their properties using the
above-mentioned network characteristics. In 1998, Watts and Strogatz proposed
a new kind of network that seems better suited for a characterization of natural
networks, the so-called small-world network [57]. In such a network there are
many local connections and only a few long-range connections. Watts and Strogatz
showed that the brain of the nematode worm C. elegans, which is the first animal
brain completely mapped, does fit into their concept of small-worldness. Hilgetag
and colleagues observed this type of network in the brains of the macaque
monkey and the cat [58, 59]. Buzsáki and colleagues proposed that the brain’s
small-world topology constitutes a trade-off between connection of distant parts
and wiring length, dictated by evolutionary constraints, such as conservation of
space, material, and energy [60]. Small-world graphs can thus be considered an
efficient organization principle for larger neuronal networks like the cerebral
cortex.

A small-world configuration is characterized by a high clustering coefficient (as
in a regular lattice) and by a low mean path length (as in a random graph). To
build such a network, one can start with a regular lattice and then rewire each
connection with a certain rewiring probability. The constructed network topologies
continuously interpolate between lattices and random networks. Moreover, they all
have the same mean degree.

Another property of real world networks that has received much attention during
recent years is the degree distribution. For regular lattices the degree distribution
is sharply peaked, and for random graphs it follows a Poisson distribution. Many
natural networks, however, show a distribution that follows a potential law at the
right tail. This indicates that vertices with many connections (so called hubs) are
encountered more often than expected. Networks with this property are called scale-
free networks. Their occurrence can be demonstrated by simulations of evolving
networks where new connections are added in such a way that vertices which
already have many connections are preferentially linked [61]. Hubs are thought
to play pivotal roles in the coordination of information flow and can thus be
regarded as an attractive concept in the understanding of the functionality of brain
structures with a high number of in-/outgoing connections, such as hippocampus
or association cortices (for an overview see, e.g., [62, 63]).
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The Influence of Network Topology on Synchronizability
In 1998, Pecora and Carroll [64] derived a link between the ability of a network
to synchronize and the underlying network topology. Recently, Nishikawa and
colleagues generalized the original findings and concluded that a network is
best suited for synchronization if every node has the same sum of in-going
couplings [65]. This is in agreement with earlier simulation studies [66, 67] where
the fact that homogeneous degree distributions favor synchronization was received
with surprise. A number of research groups have addressed the question whether
other network characteristics also reflect synchronizability of a network, such
as mean path length [68, 69], highest betweenness centrality [70], or correlation
between in- and out-degrees [71].

For networks of small-world type there is evidence from simulation studies
that synchronization is enhanced for higher rewiring probabilities [72, 73], and
in [74, 75] the authors hypothesized that synchronization in small-world networks
might also have implications for epilepsy. It is currently matter of debate whether
the epileptic brain can indeed be regarded as more random in a functional sense
(i.e., characterized by a higher rewiring probability) and because of this, is more
susceptible to seizures than a healthy brain [76].

Modeling Epileptiform Phenomena with Neural Networks
Seizures are thought to arise from an imbalance of excitation and inhibition.
The first attempts to model the influence of synaptic properties were presented
by Traub and collaborators who simulated the activity of small parts of the
CA3 region of hippocampus using networks of interconnected neurons [77–79].
Seizure generation and seizure propagation in hippocampal and other cortical
networks was also addressed in several computational network models composed
of more or less detailed neuron models [80–85]. More recently, the influence
of the network topology on seizure generation has been investigated. Studying
small-world networks of excitatory neurons and using several types of model
neurons, Netoff and colleagues provided a possible explanation for the fact that,
in a hippocampal slice model of epilepsy, the CA3 region exhibits bursts, while
the CA1 region exhibits seizure-like activity [74]. For an increasing number of
long-range connections the dynamics of their simulated neural network changed
from normal to seizure and to a bursting state. The authors speculated that the
less connected CA1 region could be in a state similar to the observed seizure
state while the more connected CA3 region is in the bursting state. Dyhrfjeld-
Johnsen and colleagues investigated seizure-induced structural changes in the
dentate gyrus as can be observed in temporal lobe epilepsy [86]. In their sim-
ulations with a realistic model (rat dentate gyrus with one billion neurons,
and no more than three synapses between any two neurons – suggestive of a
small-world architecture) the authors observed that the local axonal sprouting
outweighs the loss of long distance hilar cells and, surprisingly, hyperexcitability
was not decreased due to structural changes. Feldt and colleagues investigated
synchronization phenomena between two small-world networks of integrate-and-
fire neurons [87]. Their simulations allowed them to reproduce the observed
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preictal drop in phase synchrony on the EEG from patients suffering from focal
epilepsy [88, 89].

The aforementioned network models are able to generate activity patterns that
closely mimic epileptic activity recorded in vitro, as well as complex interactions
patterns of EEG activity seen in patients. These models have been particularly
useful in uncovering the roles of various cell types and connections in ictogenesis.
Together with recent reports that aimed to identify functional network properties in
ictal EEG recordings from epilepsy patients (see [76] for an overview), these studies
might help us to gain deeper insights into the complex interplay between structure
and function in epileptogenesis.

3.4
Neural Mass Models of the EEG

The simulation of a neural network consisting of a large number of model neurons,
as described in the previous section, requires huge computational effort (see e.g. [6]).
Alternatively, it is possible to model populations of neurons with similar properties
as a single unit. These models are called neural mass models. Since the EEG reflects
macroscopic electrical activity of neural populations, it may not be necessary to
model each single neuron in detail but instead to model the statistical distributions
of membrane potentials of many neurons and their dynamical changes as a
set of differential equations. This simplification is similar to the one achieved
by the Hodgkin–Huxley approach, where the statistical properties of a bulk of
ion channels are modeled instead of the opening and closing of each single ion
channel. It is reasonable to model populations of neurons with similar properties as
a single unit, e.g., inhibitory and excitatory neurons in a cortical column. In neural
mass models, however, the spatial resolution is dismissed and therefore some
phenomena, e.g., waves, cannot be sufficiently described using this formalism (see
e.g. [90]).

It is generally accepted that the nervous system is organized in columns. This had
already been established in the 1950s through anatomical and electrophysiological
investigations of neocortex in primates [91]. A column is a densely connected set
of neurons that exhibit a functional coherence throughout the neuron populations.
Depending on the region of the cortex it has a cylindrical shape (diameter =
300–600 µm) that spans the whole cortical thickness. The functional coherence
of neurons in a column permits the description of its dynamics as a single
unit. Experimental investigations of the dynamical behavior of such functional
units and their interpretation toward modeling were summarized by Freeman
[92, 93].

Due to the fundamental functional difference in excitatory and inhibitory neu-
rons, it is useful to model excitatory and inhibitory subpopulations of neurons. The
dynamical behavior of a larger neuron population arises mainly from interactions
between subpopulations. The macroscopic electrical activity of neural populations,
which is measured on the EEG, is said to arise from an average of post-synaptic



36 3 Impact of Computational Models for an Improved Understanding of Ictogenesis

membrane potential changes [94]. The reduction of the degrees of freedom that
arises from comprising neurons to populations can partly be compensated for by
an introduction of undirected influences on the population modeled by Gaussian
white noise.

The passive behavior of the averaged membrane potential was accessed experi-
mentally through the so-called open-loop response, where the electrical response
of a neural mass in deep anesthesia to a delta-like stimulus was analyzed [92]. It is
now widely accepted that the response of the averaged membrane potential can be
described by

hinh/exc(t) ∝ te−ainh/exct, (3.6)

where the time constants ainh/exc can be understood as lumped properties of the
dendritic network and the membranes. In contrast, some authors [83, 95] have
modeled the response of the membrane potential using an approach similar to [96].
The interaction of a neural population with itself was modeled using statistical
averages. Excitatory and inhibitory subpopulations, e.g., excitatory pyramidal cells
and inhibitory stellate cells [97], can be modeled separately, and then connected with
a coupling strength representing average axonal densities. The conversion from
the average membrane potential to a mean firing rate can be achieved by assuming
simple threshold models. When averaging over distributions of thresholds in a
population one usually obtains a sigmoidal function. For this purpose Gaussian
distributions are usually assumed (see, however, [16]), which results in a mean
firing rate of

S(V) ∝ 1

1 + e−r(V−v0)
, (3.7)

where v0 is a mean threshold, r is a slope parameter, and V is the averaged cell
potential. Considering several population models of this kind it was possible to
introduce a physiological motivated coupling mechanism to study, for example,
the interaction of columns from cortex and regions of the thalamus (thalamus to
cortex [97–99], cortex to cortex [100, 101], hippocampus to hippocampus [102]).

Disregarding the inexactness of estimated physiological parameters and the
simplified assumptions on the underlying neuron models, it is yet arguable
whether this approach to neural mass systems is relevant since, for example,
topological properties of the coupling (cf. Section 3.3) cannot be easily taken into
account. However, there have been several attempts to associate the dynamics
of the model of single or multiple columns to certain pathophysiological and
physiological phenomena observed on the EEG. Normal background EEG was
represented by a steady state of the model, where its dynamics is dominated by the
influence of dynamical noise. In certain parameter ranges some models showed
epileptiform dynamics, which were deterministically dominated. The analysis of
these signals, which are comparable to those observed during epileptic seizure, is
especially prominent in the literature [99, 101–104].

Because of the relatively simple structure of the neural mass models it was possi-
ble to treat the stable states analytically via linear response theory [93, 97, 98, 105].
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In this way power spectral densities of the linearized model could be obtained and
compared to those from EEG time-series. By such a comparison Robinson and
colleagues constrained physiologically motivated model parameters – e.g., soma
potential rise and decay rates – and compared these estimates with comparable
quantities derived from independent studies [98]. This approach may lead to a
patient-based classification of different types of epilepsies through measurements
of the individual background EEG, but a statistical evaluation remains to be
carried out.

For certain parameter ranges some models exhibit epileptiform dynamics. This
could be explored in detail using methods of bifurcation analysis. Breakspear
and colleagues related different types of seizure to the dynamics of their model
of the cortico-thalamic system [99]. Other theoretical works [83, 102] treated the
matter of cortical synchronization phenomena, and it was observed that multi-
column models can exhibit states of intermittency and generalized synchronization.
Others investigated techniques of brain electrical stimulation in the framework
of bifurcation control with their spatial-temporal model of cortical electric activity
[104, 106, 107]. The method of bifurcation control has become relevant to the
treatment of patients suffering from Parkinson’s disease and is currently under
investigation in the framework of epilepsy [108].

Based on models of the transition between normal and epileptic activity proposed
by Lopes da Silva and colleagues [109], Suffczyinski and collaborators analyzed a
model that exhibits the coexistence of a steady interictal-like and an oscillatory
ictal-like state [95, 110]. In this model the stochastic influence induces transitions
between these dynamical states. The authors showed that this type of dynam-
ics leads to a Poisson distribution of interictal and ictal states (see also [111]),
which deviated from their findings observed in certain biological systems. They
argued that a randomly fluctuating parameter responsible for the state changes
would lead to similar results. These findings indicate that either the approach
of neural mass systems cannot explain the phenomenon of the interictal-to-ictal
transition or that the time-dependence of model parameters should be described
by a non-random process which follows some underlying dynamics that can
be estimated from EEG data. The authors proposed two ways to address this
issue.

Extending a neurophysiologically relevant model initially proposed in 1974
by Lopes da Silva and colleagues [97], Wendling and collaborators exemplified
that the time-dependence of a bivariate nonlinear measure applied to the EEG
recorded during a seizure can probably be explained by changes in the coupling
strength between two model columns [101]. Extending their model by including
a physiologically relevant fast inhibitory feedback loop, the same authors [112]
showed that the transition between interictal to fast ictal activity is explained,
in the model, by the impairment of dendritic inhibition (see also [113] and
references therein). In a recent study [114], Wendling and colleagues proposed
a more direct approach to identify the three main parameters of their model
of hippocampus EEG activity (related to excitation, slow dendritic inhibition and
fast somatic inhibition): the best fitting model parameters at certain instances
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during seizure onset were identified by minimizing a spectral distance between the
model time-series and segments of the intracranially recorded EEG (see also [115]).
The authors demonstrated that their model generates very realistic signals for
automatically identified model parameters. Moreover, their findings indicate that
the interictal-to-ictal transition cannot be simply explained by an increase in
excitation and a decrease in inhibition but rather by a variety of complicated time-
varying ensemble interactions between pyramidal cells and interneurons with slow
and fast GABAA kinetics.

The studies described above are far from covering the topic EEG modeling
completely, but they clearly illustrate that macroscopic statistical and dynamical
phenomena seen on the EEG from epilepsy patients can be reproduced with high
accuracy, despite the simplified assumptions on the underlying neuron models
and network topology.

3.5
Conclusion

In this chapter we have tried to give an overview of the field of computational
neuroscience with special emphasis on ictogenesis. In a work of this scope
it is inevitable that some contributions may be over or under emphasized,
depending upon the points to be made in the text. We discussed modeling
approaches on different scales, from single neurons to neural networks and
to neural mass models of the EEG using different levels of detail. Computa-
tional neuroscience is a relatively young but fast growing branch of science.
The rapid development of refined or new models on different scales can, of
course, be related to the growing availability of fast digital computers. On
the other hand, it also indicates an increasing awareness of, and confidence
in, theoretical approaches based on computational models in order to advance
our understanding of the complex mechanisms underlying epileptogenesis and
ictogenesis.

The models currently available provide valuable insights into how the modifi-
cation of system parameters, or intrinsic fluctuations, may lead to the transition
between apparently normal activity and epileptic seizures. Findings obtained from
modeling studies thus corroborate experimental results and can help to make pre-
dictions concerning clinically relevant questions such as seizure predictability and
control. Further improvements demand the integration of experimental and the-
oretical approaches, which requires interdisciplinary research and collaborations
(cf. [116]).

Despite significant advances, the questions of detail and scale still remain.
Too detailed models may be too complex to be treated analytically and may
thus be difficult to interpret. Too general models may not capture the essence
of phenomena observed experimentally. Modeling on one scale may help to
understand experimental observation on this neurophysiological level but it may
be inadequate for another scale. Bridging microscopic and macroscopic levels of
description remains a challenge for computational neuroscience.
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47 M. Guye, J. Règis, M. Tamura,
F. Wendling, A. McGonial,
P. Chauvel and F. Bartolomei.
The role of corticothalamic cou-
pling in human temporal lobe
epilepsy. Brain, 129, 1917–28 (2006).

48 K. Schindler, H. Leung, K. Lehnertz
and C. E. Elger. How generalised



References 41

are secondarily ‘generalised’ tonic-
clonic seizures? J. Neurol. Neuro-
surg. Psychiatry, 78, 993–6 (2007).

49 K. Schindler, H. Leung, C. E. Elger
and K. Lehnertz. Assessing seizure
dynamics by analysing the correlation
structure of multichannel intracra-
nial EEG. Brain, 130, 65–77 (2007).

50 K. Schindler, C. E. Elger and
K. Lehnertz. Increasing synchro-
nization may promote seizure
termination: Evidence from sta-
tus epilepticus. Clin. Neuro-
physiol., 118, 1955–68 (2007).

51 C. S. Peskin. Mathematical
aspects of heart physiology.
Courant Institute of Mathemati-
cal Sciences, pp 268–78 (1975).

52 T. I. Netoff, M. I. Banks, A. D.
Dorval, C. D. Acker, J. S. Haas,
N. Kopell and J. A. White. Synchro-
nization in hybrid neuronal net-
works of the hippocampal formation.
J. Neurophysiol., 93, 1197–208 (2005).

53 R. Brette, M. Rudolph and
T. Carnevale et al. Simulation of net-
works of spiking neurons: A review
of tools and strategies. J. Comput.
Neurosci., 23, 349–98 (2007).

54 P. Hammarlund and Ö. Ekeberg.
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60 G. Buzsáki. Large-scale record-
ing of neuronal ensembles. Nat.
Neurosci., 7, 446–51 (2004).

61 A.-L. Barabási and R. Albert. Emer-
gence of scaling in random net-
works. Science, 286, 509–12 (1999).

62 C. J. Honey, R. Kötter,
M. Breakspear and O. Sporns. Net-
work structure of cerebral cortex
shapes functional connectivity on
multiple time scales. Proc. Natl. Acad.
Sci. USA, 104, 10240–5 (2007).

63 O. Sporns, C. J. Honey and
R. Kötter. Identification and clas-
sification of hubs in brain net-
works. PLoS ONE, 2, e1049 (2007).

64 L. M. Pecora and T. L. Carroll.
Master stability functions for syn-
chronized coupled systems. Phys.
Rev. Lett., 80, 2109–12 (1998).

65 T. Nishikawa and A. E. Motter.
Synchronization is optimal in
nondiagonalizable networks.
Phys. Rev. E, 73, 065106 (2006).

66 T. Nishikawa, A. E. Motter, Y.-C.
Lai and F. C. Hoppenstaedt. Hetero-
geneity in oscillator networks: Are
smaller worlds easier to synchronize?
Phys. Rev. Lett., 91, 014101 (2003).

67 A. E. Motter, C. Zhou and J. Kurths.
Network synchronisation, diffusion
and the paradox of heterogeneity.
Phys. Rev. E, 71, 016116 (2005).

68 I. V. Belykh, V. N. Belykh and
M. Hasler. Connection graph
stability method for synchro-
nized coupled chaotic systems.
Physica D, 195, 159–87 (2004).

69 I. V. Belykh and M. Hasler. Synchro-
nization and graph topology. Int.
J. Bifurcat. Chaos, 15, 3423–33 (2005).

70 H. Hong, B. J. Kim, M. Y. Choi and
H. Park. Factors that predict bet-
ter synchronizability on complex
networks. Phys. Rev. E, 69, 067105
(2004).

71 M. Chavez, D.-U. Hwang, A. Amann
and S. Boccaletti. Synchronizing
weighted complex networks. Chaos,
16, 015106 (2006).



42 3 Impact of Computational Models for an Improved Understanding of Ictogenesis

72 M. Barahona and L. M. Pecora. Syn-
chronization in small-world systems.
Phys. Rev. Lett., 89, 054101 (2002).

73 H. Hong and M. Y. Choi. Synchro-
nization on small-world networks.
Phys. Rev. E, 65, 026139 (2002).

74 T. I. Netoff, R. Clewley, S. Arno,
T. Keck and J. A. White. Epilepsy in
small-world networks. J. Neurosci., 24,
8075–83 (2004).

75 B. Percha, R. Dzakpasu and
M. Zochowski. Transition from
local to global phase synchrony in
small world neural network and its
possible implications for epilepsy.
Phys. Rev. E, 72, 031909 (2005).

76 J. C. Reijneveld, S. C. Ponten, H. W.
Berendse and C. J. Stam. The appli-
cation of graph theoretical analysis to
complex networks in the brain. Clin.
Neurophysiol., 118, 2317–31 (2007).

77 R. D. Traub, R. Miles and R. K.
Wong. Model of the origin of
rhythmic population oscilla-
tions in the hippocampal slice.
Science, 243, 1319–25 (1989).

78 R. D. Traub and R. Dingledine.
Model of synchronized epilep-
tiform bursts induced by high
potassium in CA3 region of rat
hippocampal slice. Role of spon-
taneous EPSPs in initiation.
J. Neurophysiol., 64, 1009–18 (1990).

79 R. D. Traub, R. Miles and
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Effective and Anatomical Connectivity in a Rat Model of
Spontaneous Limbic Seizure
Paul R. Carney, Alex Cadotte, Thomas B. DeMarse, Baba Vemuri, Thomas H. Mareci,
William Ditto

4.1
Introduction

Temporal lobe epilepsy is one of the most common forms of partial-onset epilepsy.
Animal models of temporal lobe epilepsy offer the opportunity for controlled
in vivo studies of ictogenesis. Animal models in combination with advanced in vivo
multi-scale microarray electrodes acquisition of ongoing continued neurophys-
iological activity, allows for characterization of limbic system interactions that
precede seizure onset. Advanced high-field imaging tools and methods of data
analysis allow for the simultaneous evaluation in vivo of white matter association
tracts both within hippocampal circuitry and associate limbic system tracts. The
hippocampus contains distinct layers; densely packed neuron cell body layers such
as the stratum pyramidale are surrounded by layers of neuropil, such as stratum
radiatum, where relatively few neurons cell bodies are interspersed with glia and
a complex interdigitation of dendrites and axonal projections. The hippocampus
also contains several well-described neuronal circuits like the trisynaptic intrahip-
pocampal pathway (Figure 4.1), which is linked to seizure onset, and this provides
an interesting structure for fundamental investigations into ictogenesis in temporal
lobe epilepsy. The trisynaptic pathway contains several coherent neuronal pathways
such as Schaffer collaterals, perforant and mossy fiber, that are significantly altered
in temporal lobe epilepsy.

The experimental and computational studies briefly presented here are consistent
with the view that the hippocampus circuitry is composed of functionally specialized
local populations of neurons that are interacting dynamically along reentrant
anatomical loops and pathways, within, and between, hipocampi. These large-scale
patterns of temporal activity generated by the dynamics of neuronal interactions
across the brain are often referred to as functional connectivity. By its nature,
functional connectivity involves statistical relationships between potentially large
numbers of segregated elements. Clearly, a system’s dynamics must strongly
depend on the underlying structure of the network. In the case of the brain, this
structure is equivalent to its neuroanatomy. Here we present novel results which

Seizure Prediction in Epilepsy. Edited by Björn Schelter, Jens Timmer and Andreas Schulze-Bonhage
Copyright  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Fig. 4.1 Hippocampal anatomy and con-
nectivity depicted by Cajal (1911) [1] based
on the silver chromate method, which only
stains a limited number of neurons. Here,
Cajal used arrows to demonstrate the fiber
connectivity of the trisynaptic pathway in
the hippocampus. In this circuit, entorhi-
nal cortex neurons innervate dentate granule
neuron dendrites via the perforant pathway.
Granule cell axons, called mossy fibers, then
project to CA3 pyramidal neurons. A diffuse
projection of CA3 axons forms the Schaf-
fer collateral system innervating the CA1
strata radiatum and oriens. Finally, axons

from CA1 and CA3 project via the alveus
to the fimbria. The orientation and local-
ization of these pathways define anatom-
ical layers within the hippocampus [1 =
ubiculum, 2 = perforant pathway axons,
3 = molecular layer, 4 = granule cell layer,
5 = hilum, 6 = mossy fiber axons, 7 = CA3
pyramidal neurons, 8 = Schaffer collateral
axons, 9 = stratum lacunosum–moleculare,
10 = stratum radiatum, 11 = CA1 pyramidal
neurons, 12 = stratum oriens, 13 = dorsal
hippocampal commissure, 14 = alveus,
15 = fimbria].

describe the neuroanatomical patterns of the hippocampus of local circuits and
pathways linking distinct subfields with the hippocampus. It is postulated that
both anatomical and functional tools and measures of connectivity may give novel
insights to further our understanding of ictogenesis. In order to investigate the
relationship between anatomy connectivity and functional connectivity, we need
to develop tools (acquisition and hardware) and measures to characterize both the
structure of networks as well as the dynamics of their activity.

4.2
Granger Causality

The original concept of Granger causality has played a significant role in the field of
economics since the 1960s. Now it is increasingly used in neuroscience, especially
in the past 15 years, to understand the dynamic interactions of brain circuitry.
Granger Causality (GC) provides a strong mathematical basis used to determine
the causal influence and direction of neural interactions. The basic idea can be
traced back to Wiener [2]. He proposed that, for two simultaneously measured
time series, one series can be called causal to the other if we can better predict the
second series by incorporating past knowledge of the first one. This concept was
later adopted and formalized by Granger in 1969 [3] for linear regression models
of stochastic processes. Specifically, if the variance of the prediction error for the
second time series at the present time is reduced by including past measurements
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from the first time series in a linear regression model, then the first time series can
be said to have a causal (directional or driving) influence on the second time series.
The advantage over cross-correlation metrics is that GC is more robust with respect
to changes in overall rate of activity, provides a measure of the ‘causal’ influence,
is directional, and often requires less data for analysis.

Autoregressive (AR) models [4] are at the core of parametric Granger causality
methods. GC methods make use of the variance of prediction errors from various
combinations of AR models to determine causal relationships. Pairwise Granger
Causality (PGC) is used to investigate the directional interactions between two
time series. Two AR models are required to determine each direction of influence.
Consider two time series X (t) and Y(t) where separate AR models are created to
predict current value of the X series from m (a previously determined AR model
order) previous X values and:

X (t) =
m∑

j=1

bXX (j)X (t − j) + ε(t), �1 = var(ε(t)) (4.1)

Y(t) =
m∑

j=1

bYY (j)Y(t − j) + γ(t), �1 = var(γ(t)) (4.2)

The variance of the error series ε(t), �1, is a gauge of the linear prediction accuracy
of X (t) as �1 is for Y(t). Now consider a bivariate multivariate autoregressive (MVAR)
model, W(t), where both X (t) and Y(t) are calculated from the previous values of
the X and Y time series:

W(t) =




X (t) =
m∑

j=1

aXX (j)X (t − j) +
m∑

j=1

aXY (j)Y(t − j) + η(t)

Y(t) =
m∑

j=1

aYX (j)X (t − j) +
m∑

j=1

aYY (j)Y(t − j) + γ(t)


 (4.3)

The variance of the new error series is a gauge of the prediction accuracy of the
new expanded predictor.

�W =
(

�2 ϒ2

ϒ2 �2

)
=

(
var(η(t)) cov(η(t), γ(t))

cov(η(t), γ(t)) var(γ(t))

)
(4.4)

Based on Wiener’s idea, Granger [3] formulated that if the X prediction is
improved by incorporating past knowledge of the Y series, the Y time series can
then be said to have a Granger-causal influence on the X time series. This is the
basis for the time domain version of Granger Causality where the variance of the
linear prediction error of X alone, �1, is compared to the variance of the linear
prediction error of X including Y , �2:

FY→X = ln
�1

�2
(4.5)
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Note that when �1 = �2 (i.e., the linear prediction error is not improved by
including Y) this relationship will yield a PGC value of zero. Driving in the
opposite direction is addressed by simply reversing the roles of the two time series.
It is clear from this definition that timing plays an essential role in directional causal
influences. Spectral and conditional methods have also been developed but will not
be explained here. For a more detailed exposition of these additional methods, AR
modeling, and PGC, please refer to Mingzhou Ding’s recent chapter [5] on Granger
Causality.

Because of the strengths mentioned earlier, Granger Causality is now increasingly
being applied in various neuroscience paradigms including in vivo plasticity [6, 7],
functional connectivity using fMRI [8,9], human sleep analysis [10] and connectivity
within complex neural systems [11, 12]. Causal methods have also been applied in
the study of epilepsy to examine seizure initiation and propagation to identify the
seize focus in human patients using data from EEG and ECoG recordings [5,13,14].
In the following example, we use PGC to explore the dynamic interactions between
different brain areas during seizure recorded from microelectrode arrays implanted
in vivo into the hippocampus of rats.

4.2.1
Analysis of Temporal Lobe Seizures

The continuous in vivo microarray electrode recordings present a unique oppor-
tunity to explore the in vivo dynamics and effective connectivity relationships of
seizures from an animal model of temporal lobe epilepsy (TLE). High-quality
multichannel data was continuously recorded from the rats, including multiple
seizure events from several animals. The 32 channel microwire electrodes sampled
at 25 kHz (band pass (0.5–12) kHz) recorded from these animals in hippocampus,
afford the opportunity to examine over 992 (n!/(n − k)!; n = 32 channels, k = 2 for
bivariate model) different directional hippocampal interactions on multiple time
scales using Granger Causality. The anatomy and the physiology of the hippocam-
pus is well established [15]. However, descriptions of the effective connectivity
of the hippocampus from implanted microwire arrays are rare in general, and
nonexistent for seizure behavior. The goal of this analysis is to provide a better
description of the dynamics and causal relationships underlying seizure activity
and how they differ from those observed prior to seizure.

The TLE animal model used in this study has been in use for the last two
decades [16]. In the weeks that follow this stimulation, the rat progressively
demonstrates recurrent spontaneous hippocampal seizures. The temporal and
electrographic progression of rats treated with this model closely resembles that
of human patients that have chronic mesial temporal seizures. The surgical and
electrophysiological techniques used by the Evolution Into Epilepsy (EIE) project
team at the University of Florida are described below.

The rats were prepared according to procedures approved by the University of
Florida IACUC. The rats are adult male Sprague–Daly rats that are 50 days old.
The surgical procedure consists of a craniotomy from 1.7 mm lateral to 3.5 mm
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(a)

(c)

(b)

Fig. 4.2 MR images of rat brain in vivo seven
days after simulation. In (a) the path of one
simulating electrode and the partial path of
the other simulating electrode are shown
on the right side of the brain image. In

(b) the path of the other stimulating elec-
trode is shown on the right side of the brain
image. In (c), an increase in T2-weighted
image contrast is visible bilaterally in regions
around the ventricles.

lateral of the bregma so that electrodes could be implanted into areas due to
their prominent role in epileptic discharges [17]. A 2 × 8 rectangular array of
electrodes was implanted bilaterally in both hemispheres so that they cover the
CA1/CA2 area to the DG. The electrode placement is shown in Figure 4.2 with
the surgery shown in the left panel of Figure 4.2. The spacing between electrodes
is 400 mm on the short axis and 200 mm on the long axis at a depth of 4 mm
from the surface of the brain. The length for each electrode is designed such
that the tip of each electrode is within the brain region of interest. The location
of the end of each array closest to the centerline of the brain is 4 mm caudal
to the bregma and 1.7 µm lateral. A single Teflon coated bipolar twist electrode
was placed in the posterior ventral hippocampus in the right hemisphere of the
animal, posterior to the electrode array for stimulation into status epilepticus.
The rats were allowed to recover for one week post surgery before stimulation
to seizure. A 10 second train of 50 Hz 1 ms bipolar 240 µA pulses was delivered
every 12 seconds for 60 minutes to induce status epilepticus in the rats. 32
channels of simultaneous recordings were taken from the rats 24 hours a day
for 76 days while the rat was engaged in sleep and normal exploratory behavior
in a 30 cm diameter cage. After the experiment was completed the rats were
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sacrificed and high-resolution magnetic resonance imaging (MRI) [18] was used
to verify the position of the electrodes, as shown in the lower right panel of
Figure 4.2(a,b).

Seizure detection was conducted daily by manual inspection of the raw traces and
verification against video records by an expert. The seizure grade was catalogued
and the start time of the seizure was noted. A 10-minute window surrounding
the seizure was then extracted for all 32 channels from the raw recording and low
pass filtered to 1 kHz. This frequency was chosen because it maintains most of the
features in the data while allowing for a reasonable model order for autoregressive
modeling required for parametric PGC. A 60-second window was then chosen that
encompassed the seizure. The stationarity of the time series data was addressed
by normalizing the mean and variance. The Bayesian information criterion (BIC)
was used to optimize the AR model order, which was found to be m = 25. Pairwise
Granger Causality was then calculated in a one second moving window with
50 % overlap for all possible electrode pairings (992 directional combinations)
for the entire 60-second window for 15 seizures. The analysis produces a single
time domain causal value for each electrode pairing for each window resulting
in a 32 × 32 × 119 matrix describing the causal interactions over time. These
matrices were translated into movies to better visualize changes in the effective
connectivity between the observed hippocampal regions over the time course of
the seizures.

4.2.2
Results

Qualitative visual analysis of the raw waveform, behavioral videos, and PGC
movies reveal a common progression of events during all 15 seizures that were
analyzed (Figure 4.3). To classify this progression and to allow better statistical
quantification, five distinct stages of causal interaction were identified. These five
stages each have their own unique combination of electrographic, behavioral, and
causal interactions. Panel A shows the results of Granger analysis before the onset
of a single seizure for one animal in which some causal activity occurred within the
CA1 region of the left hemisphere. The seizure began in Stage 1 (shown in Panel B)
in which a mixture of intrahemisphere activity was dominated by causal activity
within the L-CA1 region and also from the L-CA1 region into to the L-DG. This
activity gradually accumulates, sometimes includes interictal spiking, building up
to the beginning of seizure. Behaviorally, Stage 1 often includes the beginning of
the tonic phase of the seizure, where the animal remains motionless and blinks its
eyes.

Stage 2, shown in Panel C, is the most striking and is marked by a high-
magnitude mono-directional transfer from the left hemisphere into the right
hemisphere as well as substantially increased intra-hemisphere activity. These
directional transfers often reverberate sequentially from one hemisphere to the
other. After several directional transfers, the seizure moves into Stage 3 activity,
marked by mainly intra-hemisphere activity shown in Panel D. Unlike Stage 1,
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Fig. 4.3 Progression of Granger causality
analyses through a single seizure event.
The bottom electrode voltage traces are
from four of the 32 electrodes from each
of the four major hippocampal regions
including the L-CA1, L-DG, R-CA1, and
R-DG. The Granger analyses in panels A
through F correspond to the red shaded win-
dows of data highlighted over the electrode
traces (A through F, respectively). In each
Granger causality plot the driving brain area
(source) is on the y-axis and the target area
(response) is on the x-axis. For example,
the driving influence from the R-DG to the
L-CA1 in panel D is located in the upper
left corner of the plot. The magnitude of
the Granger causality interaction is repre-
sented by color ranging through blue (near
zero), light blue, green, yellow, to red (highly
causal). The interictal activity about 15 sec-
onds prior to seizure in panel A shows a
strong interaction within the L-CA1. Stage 1
in panel B shows this relationship increasing

and spreading into the L-DG as well. Stage 1
is the beginning of the tonic behavioral state
for the rat that persists until the Stage 4
transition. This driving influence from the
CA1 to the DG is abnormal and persists un-
til the Stage 4 transition. Panel C shows a
directional transfer in Stage 2 from the left
hemisphere to the right hemisphere. These
transfers reverberate directionally several
times across hemispheres. Panel D shows
intrahemisphere activity common to Stage 3.
Panel E shows across the board synchroniza-
tion for the entire array for the ‘transition
stage’ or Stage 4. Stage 4 is called the tran-
sition stage because behaviorally the rat
moves from tonic to clonic activity and the
primary driving relationship transitions from
CA1 driving DG to DG driving CA1. Panel F
shows activity from Stage 5 after the tran-
sition. In this stage the rat exhibits clonic
behavior marked by rhythmic shaking of the
limbs. (Please find a color version of this
figure on the color plates.)
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however, the causality patterns are more dynamic, of larger magnitude, and less
confined to a single area or pathway. Occasional weak cross-hemisphere directed
transfers also sometimes occur in Stage 3.

Stage 4, or the transition stage (Panel E), is usually a brief and highly causal
epoch where all areas both intra and cross hemisphere are bidirectionally causal.
This stage is usually characterized by a saturation of causal effect with nearly
the entire plot shows strong causal interactions. Behaviorally, Stage 4 marks the
transition from the tonic stage where the rat is motionless and appears tense
to the clonic stage of the seizure where the rats appendages jerk rapidly and
rhythmically. Additionally, the driving influence from the CA1 to the DG seen
during all of the prior seizure stages flips to the DG driving the CA1. Following
Stage 4, the pattern smoothly transitions into Stage 5 (shown in Figure 4.3 F),
which is made up of heavy spiking activity with a causality pattern and with
a very strong driving influence from the DG to the CA1. This driving pattern
is similar to normal driving patterns observed in interictal activity after and far
removed from ictal events suggesting a transition from abnormal to normal driving
patterns.

4.2.3
Discussion

Currently, synchronization is thought to be the dominant dynamic to occur
across the limbic system during epileptic seizures. Synchronization is defined
as adjustment of rhythms of oscillating objects due to their interaction [19].
Synchronization across a diffuse excitable network is thought to be a possible
mechanism that initiates seizure in the limbic system [20]. These diffuse models
of connectivity often included universal bidirectional connectivity. In contrast,
others suggest that a large amount of asynchrony is necessary to maintain seizure
events [21]. The results from this analysis do indeed find synchronization within
the hippocampus prior to, during, and after the ictal event. The detailed interactions
illustrated in these results have never previously been described in the study of TLE.
However, Granger Causality analysis shows that these interactions are highly
directional and follow a common progression.

One of the distinct features in Stage 1, seen in nearly all seizures, is an
increase in local interactions within the CA1 area that tend build over time
and eventually directionally influence DG within that hemisphere. The large-
magnitude directional cross-hemisphere reverberations of Stage 2 immediately
follow this activity pattern. This suggests a hierarchical progression of causation
within the CA1 that spreads to the DG and finally crosses over into the neighboring
hemisphere.

By comparison, a coherence analysis would erroneously suggest that these
directional transfers were bidirectional phenomena because this method is non-
directional. Non-directional measures would also not be able to detect the reversal
in directional connectivity between the DG and CA1 during the Stage 4 transition.
The entire seizure would seem to be dominated by bidirectional synchronization
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across the entire network using non-directional measures. However, Granger
causality analysis provides a very different story. The dominant directional
influences in the beginning stage of the seizure are abnormal, with the CA1
areas showing directional causation into DG. This is the opposite of interictal pat-
terns far removed from ictal events that often show directional influences from the
DG to CA1. Additionally, this abnormal pattern is time-locked behaviorally with the
tonic portion of the seizure. Interestingly, the flip of the directional connectivity to
connectivity resembling baseline connectivity occurs during the transition from the
tonic to clonic behavior. The implications of this directional flip are not completely
clear.

One of the possible explanations of the driving influence of the CA1 into
DG during the early phase of the seizure, highlights one of the weaknesses of
Granger causality-based methods. It is possible that the entorhinal cortex may be
differentially driving both of these areas creating a false directed influence from
CA1 to the DG, instead of the CA1 to DG influence being mediated through
the entorhinal cortex. The entorhinal cortex has been implicated as a possible
initiator of ictal events [15]. For example, it has been suggested that disinhibited
neurons in the entorhinal cortex may directly drive pyramidal cells in CA1 [15] in
pilocarpine treated network interactions. The entorhinal cortex also anatomically
connects to the DG. The alternative is that the entorhinal cortex may mediate
the activity from the CA1 to the DG during this epoch. Both of these situations
are supported by the literature and may even be happening simultaneously. It is
unlikely, based on the anatomical organization of the hippocampus that the effects
of CA1 are mediated through CA2 and CA3 to the DG. Further experimental
analysis using conditional Granger causality with electrode coverage within the
entorhinal cortex will be necessary to determine which of these connectivity patterns
is correct.

Even without these details, the results also suggest that a Granger causality
metric may be useful for seizure detection. The Stage 4 transition from abnormal
driving (CA1 to DG) to a normal driving pattern (DG to CA1) suggests that, at some
point prior to seizure, the driving pattern became abnormal. The abnormal driving
influence has been seen in the pre-ictal analysis at least a minute before seizure.
An natural question to ask would be ‘when does this driving influence become
abnormal?’ Once identified, the transition from normal to abnormal driving
influences could potentially be used as an indicator of an impending seizure.
However, the role of the entorhinal cortex in this connectivity should be determined
before this relationship is used for seizure detection. For example, if the entorhinal
cortex turns out to be the source of the abnormal driving influence it may better
aid detection if electrodes were placed in this area. Additionally, detection of this
abnormal driving influence may increase the sensitivity of current seizure-detection
methods. This could be useful for detecting epochs during epileptigenesis that are
not easily detected using behavioral or current electrographic seizure-detection
methods.

In summary, using Granger causality to reveal effective connectivity led to a new
understanding of the interactions within the hippocampus during seizure. This
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understanding provides the opportunity to make new predictions about seizure
detection and suggests new experiments that should expand understanding of
TLE. However, we have only used the most basic of GC-based tools in this
analyisis. Future work will make use of conditional and spectral GC analysis
to paint a clearer picture of effective connectivity during seizure. We antici-
pate that Granger causality will become an important tool used in the study of
epilepsy.

4.3
Structural Visualization with Magnetic Resonance

We have developed an MR imaging protocol to examine structural changes in the
rat brain during the epileptogenic period following injury. This protocol consists
of examining the rat brain in vivo at 11.1 Tesla by measuring pre-injury control
images, post-electrode-implant images, then images at 3, 5, 7, 10, 20, 40 and 60 days
following injury. Following sacrifice after day 60, the brain is fixed and excised
for further study. Very high resolution MR images of the intact excised brain are
measured at 17.6 Tesla. Then the brain is destructively processed for histological
analysis. In this MR imaging protocol, we measure anatomical images, quantify
MR relaxation times, and measure diffusion-weighted images. An example of our
in vivo MR imaging results at 11.1 Tesla is shown in Figure 4.2. In these images,
the Teflon-coated bipolar simulation electrodes are visualized in parts (a) and
(b) within a rat brain seven days following stimulation. In addition, a bilateral
increase in T2-weighted image contrast is visible in part (c) in regions around the
ventricles indicating areas of pathology. An example of the very high resolution
images we obtain at 17.6 Tesla is shown in Figure 4.4. This gradient echo three-
dimensional image has a resolution of 75 mm × 75 mm × 75 mm. In (a), the path
of the recording electrodes in indicated in the white ellipse and the tip of other
recording electrodes in shown in (b). However, the most informative structural
information is provided by the diffusion-weighted images which can be modeled
as either diffusion tensor images or as images of water displacement probability
maps.

4.3.1
Diffusion Tensor Imaging

Diffusion tensor imaging (DTI) is a non-invasive imaging technique that allows
the measurement of water molecular diffusion through tissue in vivo, and
indicates the local fiber direction within the tissue [22]. In this method, the
directional features and rate of water diffusion are modeled as a positive-definite
rank-2 tensor which allows the inference of connectivity patterns prevalent in
tissue and track changes in this connectivity over time. This rank-2 tensor
model of diffusion requires only the measurement of seven diffusion-weighted
images with clinically feasible diffusion gradient strengths. This approach enables
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(a)

(b)

Fig. 4.4 MR images of excised fixed rat brain. In (a) the
path of recording electrodes is shown within the white
ellipse, and in (b) the end of other electrodes, terminating
in the hippocampus, is shown within the white circle.

simple estimation of diffusion anisotropy, through the calculation of orientation-
independent-parameter fractional anisotropy, and infers fiber orientation by the
principal eigenvector of the diffusion tensor [23, 24]. Despite its modest require-
ments, the results achieved using DTI have been very successful in regions of
the brain and spinal cord with substantial white matter coherence and have
enabled the mapping of many anatomical connections in the central nervous
system [25–27].

4.3.2
High Angular Resolution Diffusion Imaging

The major drawback of DTI is that it can only reveal a single fiber orientation in
each voxel and fails in voxels with orientational heterogeneity, which makes DTI
inappropriate for the study of detailed connectivity relationships in the regions of
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the brain containing crossing or bifurcating fiber bundles [24, 28, 29]. The limited
ability of DTI to visualize regions of complex tissue structure has prompted interest
in the development of both improved image acquisition strategies and more
sophisticated reconstruction methods. An improved image acquisition scheme is
available in an emerging approach, called high angular resolution diffusion imaging
(HARDI) MRI [30,31], in which apparent diffusion coefficients are measured along
a large number of directions, and distributed uniformly on a unit hemisphere in
the diffusion wave vector space. By sampling the diffusion signal with high angular
resolution, the complexity of tissue structure can be visualized in each image voxel
by determining the displacement probability density function for water diffusion
in the tissue.

Several approaches to modeling the HARDI-derived displacement probability
function have been proposed by our group and others [32–35]. We recently
completed developmental work on methods to acquire HARDI data and pro-
cessing algorithms to model the diffusion displacement probability [33–37] in
order to visualize detailed fibrous structure in complex tissue regions in excised
rat brains [37] and human brains in vivo. Our first development was motivated
by earlier work from Tuch et al. [31, 38] who introduced HARDI and the dif-
fusion orientation distribution function. In our work, we expanded upon the
concept of the rank-2 tensor model of diffusion [22, 39] with the introduction
of higher rank tensor [33] in order to expand upon the concept of diffusion in
MR [40] and provide a physical basis for the visualization of complex structures
by diffusion MRI. As part of this work, we developed a measure of displacement
probability anisotropy [36], which provides a measure of tissue anisotropy in com-
plex tissue regions, as does the DTI-based factional anisotropy in simple tissue
regions.

As shown in Figure 4.5, recent investigations in our laboratory regarding the
white matter structural changes during the ‘latent period’ of epileptogenesis
have revealed that MR HARDI methodology can identify functional changes in
limbic system connectivity in advance of the onset of epilepsy [35, 37]. These
images of an excised fixed rat brain, sacrificed ≈60 days following injury, were
measured at 17.6 Tesla. Figure 4.5 shows the displacement probabilities in a
control, (a) and an epileptic rat, (b). The hippocampus and entorhinal cortex are
shown in expanded views with the regions in the red boxes. The displacement
probability map in each voxel depicts the orientations of the highly anisotropic
and coherent fibers. Note voxels with crossing orientations located in the dentate
gyrus (dg) and entorhinal cortex (ec). The region superior to CA1 represent the
stratum lacunosum-moleculare and statum radiatum. In the control hippocampus,
the molecular layer and stratum radiatum fiber orientations paralleled the apical
dendrites of granule cells and pyramidal neurons, respectively. In the epileptic
hippocampus, the CA1 subfield pyramidal cell layer is notably lost relative to the
control. Structures of the dentate gyrus are also altered with more evidence of
crossing fibers. We are continuing to develop HARDI acquisition and analysis
methods to apply these methods to study evolving brain pathology in the living
subject.
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Fig. 4.5 Probability maps of coronal images
of a control and an epileptic hippocampus.
The upper left corner shows the correspond-
ing reference images where the rectangle
regions enclose the hippocampus. In the
control hippocampus, the molecular layer
and stratum radiatum fiber orientations par-
alleled the apical dendrites of granule cells
and pyramidal neurons, respectively; whereas
in the stratum lacunosum, moleculare ori-
entations paralleled Schaffer collaterals from
CA1 neurons. In the epileptic hippocampus,

the overall architecture is notably altered;
the CA1 subfield is lost, while an increase
in crossing fibers can be seen in the hilus
and dentate gyrus (dg). Increased crossing
fibers can also be seen in the entorhinal
cortex (ec). Fiber density within the statum
lacunosum moleculare and statum radiale is
also notably reduced, although fiber orien-
tation remains unaltered (from NeuroImage
37 (2007) 164–176, used with permission).
(Please find a color version of this figure on
the color plates.)
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5
Network Models of Epileptiform Activity: Explorations in Seizure
Evolution and Alteration

Pawel Kudela, William S. Anderson, Piotr J. Franaszczuk, Gregory K. Bergey

5.1
Introduction

The EEG during a seizure (ictal EEG) has specific electrophysiologic characteristics
of the underlying changes in spatially and temporally ordered brain network
synchrony. Recent advances in methods of signal analysis [1] have provided an
improved accuracy in describing the frequency components of the ictal EEG.
Time-frequency analyses of intracranial EEG (ICEEG) recordings from patients
with mesial temporal lobe epilepsy reveal common elements in evolution of this
seizure type. These elements are represented by rapidly evolving dynamic changes,
including a period of organized rhythmic activity that undergoes a monotonic
decline in frequency before transitioning to a period of intermittent bursting prior
to seizure termination [2].

The application of time-frequency analysis to the ICEEG reveals these ictal
characteristics, but raises many new questions that remain unanswered. The
identified phases in the ictal ICEEG indicate dynamic changes in the brain
neuronal synchrony and currently it is not known why seizures of temporal lobe
onset undergo these changes. The molecular, cellular, or functional mechanisms
that may cause or contribute to the ictal evolution remain poorly understood.
Identifying potential mechanisms underlying the dynamic changes seen in ictal
ICEEG could yield important insights into understanding seizure evolution and
termination. If these mechanisms were better understood, this could lead to
development of new treatment options for patients with epilepsy.

This chapter starts with a brief overview of seizure dynamics and evolution
followed by the description of network models used to simulate the evolution of
seizures of temporal lobe onset. The various outputs from the network model
simulations are analyzed and compared directly with ictal EEG signals or with
results of time-frequency analyses of the ictal EEG. Finally, the attempt to simulate
the interruption of seizure evolution by external electrical stimulation acting on a
modeled network is described. The disruption studies are performed in networks
of different size and complexity varying from two synaptically connected small
neuronal networks to a large realistic network with cortical architecture.

Seizure Prediction in Epilepsy. Edited by Björn Schelter, Jens Timmer and Andreas Schulze-Bonhage
Copyright  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40756-9
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5.2
Time-frequency Analyses of Seizure Dynamics and Evolution

Time-frequency analyses of ICEEG can provide precise information about the
occurrence of specific frequency changes in these signals. These analyses were
used to reveal specific seizure characteristics, and to study seizure dynamics
and evolution [2, 3]. Figure 5.1 shows a Matching Pursuit (MP) time-frequency
energy distribution of the ictal ICEEG signal recorded from depth electrodes in
patients undergoing pre-resection evaluation. Such studies demonstrated after the
seizure initiation, a period of relatively low complexity ICEEG signal, which is
dominated by one predominant rhythm. This rhythm peaks at 8 Hz and undergoes
a monotonic decline in frequency with the subsequent transition of the ICEEG into
a high complexity signal before seizure termination. A similar evolution pattern is
frequently observed in mesial temporal seizures. Pacia and Ebersole [4] similarly
identified a pattern of frequency evolution (5–9 Hz) in hippocampal onset seizures
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Fig. 5.1 The time-frequency energy distribu-
tion of the entire seizure recorded by the
deepest depth electrode contact, located
near the region of seizure onset. The ICEEG
recorded from contact is shown below the
plot. The left vertical axis shows the fre-
quency in Hz. The vertical calibration bar
is for the illustrated ICEEG. The effective

sampling rate was 100 Hz. The first 296
atoms with the highest energy are shown.
The periods of seizure initiation (INI + TRA),
organized rhythmic activity (ORA), and inter-
mittent bursting activity (IBA) are marked.
(Figure reprinted from [2] with permission
from Elsevier.)
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in scalp recordings. Quiroga et al. [5] reported a mean value of 7.9 Hz frequency
after seizure onset and a mean of 1.4 Hz at the end of the seizure in tonic
clonic seizures. These examples indicate that there is a shift from high into low
frequencies as the seizure of temporal lobe onset progresses.

5.3
Model Assumptions and Modeling Approach

Since the low frequencies might be the signature of late phase or seizure ter-
mination, it is important to recognize the mechanisms that are responsible for
this frequency shift and others that are implicated in seizure evolution. Before
presenting details of the network model, it is necessary to introduce the model
assumptions along with some general comments on the modeling approach. The
occurrence of a predominant rhythm in the EEG is most likely a consequence
of the activity of some population of neurons, which are recurrently activated,
and fire trains of action potentials (APs) at exact intervals matching the frequency
of the predominant rhythm. The decline of the frequency of the predominant
rhythm possibly reflects the involvement of some cell-specific mechanisms, which
might occur at the molecular, membrane or the synaptic level. The above two
assumptions serve as working hypotheses that will be tested in the network model.
In order to build an appropriate network model that explains the rhythm, and
its decline, the following two questions need to be formulated. First, what is the
source of the periodic excitation and refractoriness of neurons in the rhythmic
repetitive neuronal firing? Second, what is the mechanism that modulates periods
of recurrent neuronal firing and refractoriness?

The present model will attempt to simulate epileptiform activity in a disinhibited
neuronal network, where continuous neuronal activity arises from mutual neuronal
excitation in the network. Our strategy is to add the transient refractoriness to
neurons in order to periodically stop continuous activity. With regard to the
first question, the neuronal refractoriness might arise from any outward current
with activation/inactivation dynamics matching the appropriate time scale of the
observed frequencies. We considered slow hyperpolarizing Ca2+ dependent K+

current (AHP) as the source of neuronal refractoriness, because this current
underlies neuronal bursting and adaptation behaviors and is regulated by slowly
changing [Ca2+]i. It should be also emphasized that Ca2+-dependent K+ currents
have for a long time been implicated in epileptogenesis [6–9]. Regarding the
second question, we considered intracellular calcium clearance mechanisms as
a factor that can modulate periods of neuronal inactivity. This hypothesis is
supported by two observations: 1) that epileptiform activity is associated with
enhanced Ca2+ influx and 2) the evidence of impaired ability of neurons to
remove calcium in conditions of high [Ca2+]i in experimental models of epilepsy
[10–12].

These hypotheses are tested in a simple neuronal network model consisting
of n by n excitatory and m by m inhibitory neurons uniformly distributed in a
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2 dimensional plane. The typical size of the network varies from 1600 to 65 000
neurons and consists of 10% inhibitory neurons. Inhibitory neurons make synap-
tic contacts locally with neighboring excitatory and inhibitory neurons. Excitatory
neurons synapse with neighboring inhibitory neurons and can make long range
connections with remote excitatory neurons but the probability of connections de-
creases exponentially with distance. Neurons are simulated as single compartment
using a conductance-based model (Equation (5.1) in the Appendix). The active
membrane model includes sodium, calcium, and potassium currents. Sodium
and potassium are Hodgkin–Huxley type currents, while the calcium current
is modeled with the Goldman–Hodgkin–Katz equation. These networks are ac-
tivated by external APs delivered at random intervals derived from a Poisson
distribution to selected excitatory neurons in the center of the network array. The
procedure of induction of bursts in neurons includes the gradual reduction of
the excitatory drive to inhibitory neurons in the network. Typically, the inhibitory
drive removal starts from the 5th second of simulation and at the 10th second
the inhibitory drive is entirely removed. In these networks, each neuron has a
minimum of two excitatory synapses on input from randomly selected presy-
naptic neurons and the strength of the excitatory synapses is adjusted to the
level allowing burst spreading from pre- to postsynaptic neurons throughout the
network.

5.4
Recurrent Neuronal Bursting and Mechanism of Burst Frequency Decline

In this network, bursts of APs arise simultaneously in a population of excitatory
neurons after removal of the inhibitory drive. This is started by random neuronal
firing that occurs in neurons located in the center of the network, with subsequent
spread of the firing along recurrent excitatory synaptic pathways. The synchrony is
characterized by simultaneous occurrence of AP bursts or AP trains in a population
of excitatory neurons. During bursts that last 50–100 ms, synchronization implies
that bursts in any two neurons occur within tens of milliseconds of one another.
Within a burst, the simultaneous occurrence of APs in two or more neurons is not
important but may occur as well.

In the first simulation a very simple model of calcium dynamics was used.
[Ca2+]i in neurons was simulated in a thin shell under the membrane. Ca2+ flow
is proportional to the ICa current amplitude and the Ca2+ clearance mechanism is
represented by single removal rate parameter R. Figure 5.2 shows the total number
of action potentials fired by a population of excitatory neurons in a network as a
function of time after removal of the inhibitory drive from the network. The 8 Hz
periodic bursting in this network was evoked by APs delivered at random intervals
and a high rate to neurons located in the center of the network array. Within each
peak, excitatory neurons fire 100 ms long trains of APs. Each single AP is associated
with activation of ICa and Ca2+ influx, which is next followed by the increase of the
IAHP current. Inactivation of IAHP is a slowly changing [Ca2+]i-dependent process,
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Fig. 5.2 The total number of action poten-
tials generated in the network of 51 840 exci-
tatory neurons vs time after the removal of
the inhibitory drive from the network. Peri-
odic activity in the network array is triggered
by action potentials continuously delivered
at random intervals (from Poisson process

with λ = 0.03) to 324 excitatory neurons in
the center of the network array. Continu-
ous activation evokes periodic activity with
a frequency of 7.5 Hz in the network. The
calcium removal rate R = 0.018 × 103 s−1.
(Figure reprinted from [13] with permission
from Elsevier.)

so this current is sustained between APs. The amplitude of IAHP increases with
increasing number of APs, and after several APs, the IAHP current hyperpolarizes
the membrane sufficiently to prevent neuronal response to excitation. Therefore
each peak in Figure 5.2 is followed by a period of neuronal inactivity resulting
from summation of IAHP. The length of that period depends on how fast [Ca2+]i
returns to the baseline, which in turn depends on the rate of Ca2+ clearance. In
consequence, interburst intervals are regulated by the Ca2+ clearance rate (R) in
neurons.

In later simulations the rate of Ca2+ clearance R was altered in order to
vary the frequency of recurrent periodic neuronal bursting in the network. The
Ca2+ clearance rate R decreased exponentially and changed dynamically during
simulations. This decreasing R can be interpreted as an alteration in the ability
of neurons to remove calcium after an enhanced Ca2+ influx consistent with
epileptiform activity reported in experimental models of epilepsy [10–12]. The
frequencies of bursting in 81 adjacent neurons remote from the site of network
activation are plotted in Figure 5.3(a). Points were obtained from the instantaneous
burst-to-burst intervals measured in these neurons. In a 60 s long simulation,
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Fig. 5.3 (a) Decreasing the calcium removal
rate R during the simulation decreases the
frequency of bursts in neurons. Each of 26,
263 points represents the instantaneous fre-
quency of bursts, measured as the reciprocal
of the current period of bursting, in exci-
tatory neurons (n = 81) in a remote area
from the site of activation. The vertical
axis indicates the frequency of bursts. The
bottom horizontal axis indicates time and
the top axis indicates the calcium removal
rate R, which decreased exponentially from
0.018 × 103 s−1 (t = 0 s) to 0.0016 × 103 s−1

(t = 70 s). (b) Change in neuronal bursting

patterns caused by change in the calcium
removal rate R. The top trace shows the
membrane potential of one neuron located
near the border of the network array (remote
from the site of network activation). Total
time shown on trace is 45 s. The two lower
traces show an expanded view of two 1-s
periods from the top trace at the 12th and at
the 28th s of simulation. The calcium removal
rate R has decreased exponentially from
0.089 × 103 s−1 (t = 0 s) to 0.0019 × 103 s−1

(t = 45 s) during the period shown in the
top trace. (Figures adapted from [13].)
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the frequency of bursts decreased approximately 2.5 times (from 8 Hz to 3 Hz)
while the Ca2+ clearance rate R decreased at the same time tenfold (from 0.018
to 0.0018). Figure 5.3(b) shows the activity pattern from a single neuron, with
expanded views of two 1s long periods, approximately at the 19th and 30th second
of the simulation. When the Ca2+ removal rate R decreases, the burst-to-burst
intervals increase and the frequency of burst occurrence per second decreases.
The comparison of ictal ICEEG signal from a depth electrode and the simulated
local field potential (LFP) is shown in Figure 5.4. This simulated LFP signal
represents an average membrane potential in the proximity of the hypothetical
electrode and was calculated from the membrane voltage of 81 adjacent neurons.
The corresponding time-frequency energy distributions are also illustrated for both
signals. The comparison of the predominant frequency decline observed in the
ictal IEEG and the burst frequency decline obtained in two network models is
shown in Figure 5.5. The first model was simulated with an exponential and the
second with a linear Ca2+ removal rate R decrease. The plotted points represent
centers of the atoms in the corresponding time-frequency energy distributions.
In both simulations, patterns of changes in the frequency follow the pattern of
frequency changes observed in the signal from a depth electrode. In the model
with an exponential decrease in R the pattern is slightly more consistent than in
the model with a linear decline in R.

5.5
Network Models of Epileptiform Activity Disruption by External Stimulation

These network models can reproduce typical characteristics of seizure dynam-
ics and evolution. This includes the signal similarities and the time frequency
characteristics of that signal that are consistent with characteristics of the ictal
ICEEG. The network model studies revealed potential factors and mechanisms
involved in seizure dynamics and evolution. This knowledge would be partic-
ularly useful when one considers new treatment options based on the idea of
modification of seizure evolution. Because of the nature of seizures, these efforts
could point toward methods that would have acute abortive effects on seizures
after onset. The paradigm of external electrical stimulation can potentially offer
such options. Driven by evidence from human and animal studies, the possi-
bility of seizure control by external electrical stimulation is gaining considerable
attention. The actual therapeutic effect of electrical stimulation is however poorly
understood. Theoretical computational studies performed in the context of neu-
ronal networks again can help identify mechanisms leading to suppression or
disruption of repetitive neuronal firing. Examples of network models of dis-
ruption of activity in neurons by externally administered stimuli are described
below. The first two network models focused solely on the mechanism of ac-
tion rather than providing the exact description of electrode-neuron interactions.
The latter are described in the model of a network with cortical architecture,
where neurons are stimulated by a realistic electrode using realistic stimulation
parameters.
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5.6
Chain Network Model Studies

The mechanism of recurrent bursting termination was studied in two synaptically
connected neuronal networks [14]. Each network consisted of less than a hundred
excitatory neurons that were randomly synaptically connected. A few neurons from
network A make synaptic contact with a few neurons in network B. In the same
way, neurons in network B make contact with neurons in network A via a synaptic
feedback loop illustrated in Figure 5.6 by the dashed line. The active membrane
model used in these neuron simulations included a slow Ca2+-dependent K+

current (IAHP), which hyperpolarizes the neuronal membrane after each AP. This
current is responsible for the spike frequency adaptation in neurons in the presence
of prolonged stimulation.

Neurons in network A activated by an external stimulation or a current pulse
injection respond with APs spreading over the population of neurons instantly
and bursts of APs occurring simultaneously in all neurons. These bursts stop
simultaneously in all neurons after approximately one hundred milliseconds, as
a result of summation of the IAHP current in the neurons. After each burst
the neuronal membrane remains slightly hyperpolarized for several hundred
milliseconds until the IAHP current inactivates. These post-bursting periods are
characterized by decreased excitability of neurons. Activity in network A causes
activation of neurons in network B via the existing synaptic connections and
similar bursts occur in neurons in network B. Next, neurons in network A are
again activated via the excitatory feedback loop so the bursting activity reappears
in network A. In order to maintain such a continuous network interaction and
to have stable periodic bursting in both networks, the feedback loop delay must
be larger than the time of recovery of neurons from hyperpolarization caused by
the IAHP current. Typically, these delays must be set on the order of hundreds
of milliseconds. The continuous recurrent bursting can be stopped by the same
stimulus that was used to start this activity if the second stimulation of neurons
in network A occurs before these neurons receive excitation from B. Additional
stimulation would extend the refractory period, and network A would not be able

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fig. 5.4 Time-frequency decompositions of the dominant rhythm in simulated LFPs computed
for an array of 81 locally connected neurons (b) and the recorded signal from the depth electrode
contact nearest the mesial temporal region of seizure onset in a human during the period of
organized rhythmic activity in (a). Each panel shows the trace of signal and the energy map
of time-frequency atoms obtained from matching pursuit decomposition of the band-filtered
(2–10 Hz) signal to separate the predominant frequency. Only 40 atoms with the highest energy
are shown. The horizontal axes show time in seconds, the vertical axis shows relative amplitude in
arbitrary units for signal plots, and frequency in Hz for energy maps. The gray areas in the energy
plots indicate the areas of concentration of energy for Gabor atoms used for decomposition.
The pattern of changes of the dominant frequency in the simulated LFP (b) is consistent with
the pattern of changes in the dominant frequency observed during the organized rhythmic
activity period in the recorded signal from the human with the seizure (reprinted from [19] with
permission  2004 IEEE).
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Fig. 5.5 Illustration of the decline in the
dominant frequency in the signal from the
depth electrode and simulated LFPs. Points
represent the centers of atoms from time-
frequency energy distributions with the high-
est energy. Asterisks (∗) represent atoms
from the decomposition of the recorded
signal, open circles (◦) represent atoms

obtained from simulations with an expo-
nential decrease in calcium removal rate
R = 0.018 × 103s−1 × exp(−t/28 s); and open
diamonds (�) represent atoms from simu-
lations with a linear decline of R (e.g., R =
0.018 × 103s−1 × (1 − 2.85 × 10−4s−1 × t)).
(Figure reprinted from [13] with permission
from Elsevier.)

to fully respond to excitation received from network B. Also network B would
not be able to fully respond to excitation from network A (after the second
stimulation) because neurons in network B are still in the process of recovery from
afterhyperpolarization. This mechanism is shown in Figure 5.6.

Typically, synaptic transmission delays are shorter than 2 ms. A few hundred
millisecond delayed feedback loop in the above two-network model was used
in order to reduce the complexity of the model. This allows us to investigate
the possibility of recurrent activity interruption and to demonstrate possible
mechanisms of stopping such recurrent activity. In situ, such a feedback loop
can exist from several interconnected networks. Figure 5.7 illustrates an example
of a hypothesized loop consisting of 16 networks (called subnetworks hereafter).
Usually stimulation of one selected subnetwork induces traveling wave activity in
the network chain loop. The same stimulation that was used to start the activity
can be later used to stop it, but it requires the precise selection of a time window
for stimulation. This is illustrated in Figure 5.7, where the stimulus was applied
to the selected subnetwork before the traveling wave passes. Interestingly, when
the number of subnetworks in the loop increases, it is possible to induce several
waves of activity in a single network chain loop. Simultaneous termination in all
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Network A

Network BExternal stimulus1 s

Fig. 5.6 Illustration of recurrent and periodic
bursting in a two-network model. Bursting
activity was initiated earlier by the current
pulse injection (I = 10 µA cm−2, t = 50 ms)
to neurons in network A (not shown). When
the same external current is applied to all
neurons in network A at a specified time
before excitability has returned to baseline

in network A, the bursting of the network
ceases. The four selected neurons from net-
work B have inputs from the four selected
neurons in network A. A feedback loop is
modeled as a single connection with a delay
of 800 ms. (Figure reprinted from [14] with
permission from Elsevier.)

subnetworks is also possible but requires multipoint stimulation along with careful
selection of time windows for both stimuli [15].

5.7
Networks with Realistic Cortical Architecture

These chain network model studies suggest that the effectiveness of stimulation
depends on the underlying network activity phase and the timing of stimulation.
Although these network models may account for the actual mechanism underlying
the interruption of recurrent network activity, they cannot realistically describe the
actual neuronal interactions in the brain. In order to gain a better understanding
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(a)

0.1 sec 0.2 sec 0.3 sec 0.4 sec

0.5 sec 0.6 sec 0.7 sec 0.8 sec

0.9 sec 1.0 sec 1.1 sec 1.2 sec

1.3 sec 1.4 sec 1.5 sec 1.6 sec

(b)

Fig. 5.7 Schematic diagram (a) of a loop
of 16 randomly connected local networks.
Each small square represents 81 locally con-
nected neurons (shown only in one square
and indicated by circles). Each neuron in a
subnetwork has two randomly assigned in-
puts from neurons inside the subnetwork
and one randomly assigned input from a
neuron in the preceding subnetwork. Arrows
show the pattern of connections between
subnetworks. (b) Recurrent bursting in a

loop shown in the diagram. The activity in
the loop is evoked by applying an external
current to all neurons in one subnetwork
indicated by the arrow. The time is shown
at the top of each frame. The first stimulus
which initiates activity is applied at 0.2 s. The
second at 1.3 s ceases recurrent bursting.
The gray scale indicates the relative intensity
of bursting in the subnetworks, black rep-
resents lack of bursting. (Figure reprinted
from [15] with permission from Elsevier.)

of the mechanisms of suppression and to find effective stimulation parameters,
more advanced models are needed. The effects of electrical stimulation on the
suppression of neuronal activity was simulated in networks with a realistic cortical
architecture. Neurons in these networks are arranged in vertical minicolumns and
in four horizontally oriented layers. Each minicolumn consists of 12 pyramidal
neurons (equally distributed between layers II/III, V, and VI), one stellate neuron
in layer IV, and three inhibitory neurons (basket and double bouquet in layer II/III,
and chandelier in layer IV). Stellate and pyramidal neurons in layers II/III and IV are
simulated as regular spiking neurons with spike frequency adaptation. Pyramidal
neurons in layer V are simulated as intrinsically bursting neurons. Inhibitory
neurons are simulated as fast spiking neurons, except chandelier neurons, which
exhibit regular spiking. The characteristics of the neurons as well as the connectivity
patterns were drawn from a variety of histological data sources. The connectivity
pattern inside a minicolumn is based on a model of visual cortex [16]. A diagram
of the intrinsic connectivity within a given minicolumn is illustrated in Figure 5.8.
The extra-columnar wiring (between remote minicolumns) was also derived from
several histological studies. The complete list of references can be found elsewhere
[17]. Typically, pyramidal neurons from layer II/III make isotropic connections
within 300 µm radius to other pyramidal neurons in layer II/III with a probability
of connection of 5% and to layer IV stellate neurons with probability 5% and
to layer V with probability 9%. Pyramidal neurons in layer II/III project also to
surrounding basket and chandelier neurons and the number of connections was
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Pyramidal Double bouquetStellate Basket Chandelier

II/III

IV

V

VI

Fig. 5.8 Schematic diagram of the types
of neurons as well as their intrinsic con-
nectivity within a minicolumn. Each mini-
column consists of 16 neurons includ-
ing 12 pyramidal, one stellate and three

inhibitory. The connections between excita-
tory and inhibitory neurons are on the right.
Excitatory–excitatory connections are on the
left. The connectivity pattern is based on a
model of the visual cortex [16].

set to 5% of the total number of excitatory to excitatory connections. Connection
ranges and connectivity probabilities between other neurons within and between
layers can be found in [17]. The center to center distance between minicolumns
is assumed to be 25 µm. The number of simulated minicolumns is 32 by 32 and
includes 16 384 neurons. This corresponds to an 800 µm × 800 µm square piece
of gray matter. No attempt was made to simulate white matter connections.

Networks are activated by APs delivered at random intervals to the 16 most
central pyramidal neurons in layer II/III. It involves random current injection to
these neurons at a very low probability. This provides robust ongoing activity and
reinitiates activity after stimulation. In order to have various patterns of activity in
the network, we introduced five different levels (B to F) of network connectivity.
These connectivity patterns were derived from the initial connectivity pattern (A) by
introducing multiplicative factors (ranging from 0.25 to 1) that modify the number
of excitatory and inhibitory connections independently. The stimulation procedure
includes the calculation of a voltage field distribution (Equation (5.2)) near the
circular disk electrode of radius a, with current amplitude I applied to that disk in
homogenous medium of σ conductivity. ρ is the radial distance from the center
of the disk in the X Y plane, and z is the Z coordinate (distance below the disk).
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The applied current I has the form of a square wave (positive followed by negative
lobe, 200 µs each) delivered at a frequency from 60 to 200 Hz for up to 100 ms total
stimulation time. The induction of action potentials was assumed to take place in
the vertically oriented initial segments of the neurons, with the length of the initial
segment assumed to be δ = 30 µm. The threshold was calculated according to
Equation (5.3), which is a second difference of the voltage drop along the neuronal
initial segment. The threshold value for the induction of an action potential is
3 mV, and each time the threshold function exceeds that value, a single current
injection pulse is delivered to a neuron. We also simulated the induction of APs
in the nodes of Ranvier in horizontally oriented axon branches. This mechanism,
however, cannot be satisfactorily modeled at this neuronal network scale. A typical
internodal spacing for a 5 µm diameter axon is 500 µm. The size of the simulated
network in our model is 800 µm by 800 µm and the majority of neurons make
connections within less than 300 µm. These computational constraints limit the
total number of APs generated in axons that occur after stimulation in the network.
The mechanism of induction of APs in axons, however, can be well modeled in
larger networks.

Figure 5.9 illustrates the instantaneous activity of all neurons in the simulated
network in time (before, during, and after stimulation). The electrode has a 1 mm
radius and was positioned in the upper left corner of the network, with the center
of the electrode overlapping with the corner of the network. 200 Hz stimulation
occurs from 0.5 to 0.6 s and is indicated as a step. After the stimulation, there is a
suppression of activity in the network lasting approximately 0.5 s.

A set of similar simulations of monopolar stimulation with application of
biphasic frequency in the range 60–200 Hz was also performed. The electrode
was positioned in the upper left corner of the network. Five simulations were
performed each for a different network connectivity pattern labeled from B to F.
Stimulations occurred from 0.5 to 0.6 s. Figure 5.10(a) shows the number of APs
fired by pyramidal neurons in layer II/III before and after 200 Hz stimulation.
Applied stimulation causes a temporary suppression of activity in the network,
which reappears from random APs constantly delivered to the network.

The time delay to return of activity, which is defined as the time from the end of
stimulation to the first peak in activity in the network after stimulation is plotted
in Figure 5.10(b). The delay time to return to activity is plotted as a function of
frequency for all tested connectivity patterns (B–F). There is a plateau effect, with
longer return to activity times at higher stimulation frequency.

The position of the electrode and its effect on the delay time to return of activity
in a network was examined. This included moving the electrode in the parallel and
perpendicular directions to the network plane as illustrated in Figure 5.11. The
electrode was positioned 155 µm above the hypothetical surface of the network.
Plot (a) illustrates the return to activity time as a function of electrode position
relative to the center of the network. The abscissa indicates the distance from the
center of the electrode to the center of the network. The ordinate indicates the delay
time to return to activity. Five simulations were performed, each for a different
connectivity pattern labeled from B to F using 200 Hz stimulation. There is a peak
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Fig. 5.9 Snapshots of network activity for all types of neu-
rons as a function of time. In this particular simulation a
network with connectivity pattern C was used. Stimulation
was applied from 0.5 to 0.6 s and momentary suppression of
activity occurs from 0.65 s to 1.17 s.

in the delay time to return of activity for all patterns of connectivity as the center of
the electrode is 0.75 mm–0.5 mm from the center of the network.

In the case of one pattern of connectivity B the electrode was moved away from
the center of the network in the opposite direction in order to validate the results.
There is a symmetric peak corresponding to the position of the electrode on the
opposite side. Simulation of the effect of moving the electrode perpendicular to
the network plane is illustrated in Figure 5.11(b). The vertical line indicates the
hypothetical surface of the cortex. When the electrode is 200 µm or more above the
surface of the network, the effect of suppression of activity in a network disappears
entirely. This is a reflection of the fact that the threshold values for the initial
segment activation, as well as the Z coordinates of the initial segments within a
given layer, were the same for all of the neurons. Introducing a 1 mV threshold
value dispersion smoothed this effect and the sharp cutoff in the time delay to
return to activity in Figure 5.11 is replaced by a tail.

Simulations of bipolar stimulation were also performed, including dipole stim-
ulation with two electrodes of 250 µm radius each and separated by 1.6 mm, center
to center. The same stimulation protocol as in the monopolar studies was used but
with opposite polarity voltage applied between the electrodes. The entire network
was divided into four equal sections and two patches on opposite corners of the
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Fig. 5.10 The effect of stimulation on neu-
ronal activity as a function of frequency of
stimulation for five different connectivity pat-
tern (B–F). Plot (a) illustrates the number
of APs fired in time by pyramidal neurons
in layer II/III. 200 Hz stimulation occurs
from 0.5 to 0.6 s (arrows). The time delay
to return of activity is defined as the time

after 0.6 s at which the first peak in the layer
II/III network activity occurs. Plot (b) shows
delay time to return of activity (layer II/III
pyramidal cells) as a function of frequency
for the tested connectivity patterns (B–F).
(Figure reprinted from [17] with permission
from Springer Science and Business Media.)
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Fig. 5.11 (a) Stimulation effects as a func-
tion of electrode position parallel to the net-
work surface. The time to return of activity
(layer II/III pyramidal cells) is plotted as a
function of the stimulation electrode distance
from the center of the network for five types
of connectivity patterns. The pattern B data
was continued through the center of the
model to show the approximate dimension

of the active central ring of stimulation un-
der the electrode. (b) Stimulation effects as
a function of height above the network for
the tested connectivity patterns (B–F) (layer
II/III pyramidal cells). The single vertical
line marks the hypothetical cortical surface.
(Figure reprinted from [17] with permission
from Springer Science and Business Media.)

network were preferentially connected to each other mainly between layer II/III
pyramidal cells. The connected patches areas are marked in gray in Figure 5.12(a).
This was done to introduce some anisotropy to the network, and may reflect long-
range patch connections (not via white matter) that are observed in the mammalian
cortex. These studies were performed in the context of how suppression of activity
depends on dipole electrode orientation relative to the patch connection orientation.
The dipole was rotated with the center of rotation overlapping the center of the
network. The stimulation was applied between 0.5 to 0.6 ms of simulation. The
longest time delay to return of activity was observed in the network when the dipole
axis was parallel to the connected patch axis. Figure 5.12(b) illustrates the time delay
to return of activity in the network as a function of the dipole rotation angle. The
time delay to return of activity as a function of the electrode separation is plotted
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Fig. 5.12 Study of the influence of stimu-
lation on longer range patch connections
in the network. Two opposite corners of
the network, specifically between layer II/III
pyramidal cells in each patch, are prefer-
entially connected. Stimulation is via the
dipole electrode arrangement, and the plots
of layer II/III pyramidal cell activity are pre-
sented as a function of the dipole orienta-
tion. Stronger stimulation induced effects
are observed with the dipole axis parallel
to the connected patches. The connected
patches are shaded gray in the schematic,
and the two dipole disks are represented as
circles around the periphery of the model.
The arrows mark the onset and cessation
of stimulation (connectivity pattern C). The

dipole marked with the ‘+’ sign undergoes
the positive lobe of stimulation first, the ‘−’
electrode is switched in polarity. The dipole
is rotated in the clockwise direction around
the model. (b) The time delay to return
of activity as a function of dipole rotation
angle taken between the ‘0’ orientation pre-
sented in the inset on the left side of the
figure, and the ‘90’ orientation shown on the
right side. (c) The time delay dependence
on the separation of the two electrodes,
with the dipole system oriented along the
connected patches. A vertical line marks
the point of contact of the two electrodes.
(Figure reprinted from [17] with permission
from Springer Science and Business Media.)

in Figure 5.12(c). The vertical line marks the point of contact of the two electrodes.
A set of simulations were performed in order to determine the importance of the
timing of stimulation. These simulations show that the delay time to return of
activity depends on the timing of stimulation onset with respect to the phase of
network activity. A brief pulse of 200 Hz stimulation was applied with the onset
varying from −60 ms to +30 ms with respect to a local peak in neuronal activity,
Figure 5.13(a). The dependence of the delay time to return of activity on the timing
of the stimulus is illustrated in Figure 5.13(b). A longer delay time to return of
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Fig. 5.13 Study of timing of single-pulse
stimulation with respect to the underlying
network rhythmicity, as demonstrated by the
connectivity pattern C. The time to the re-
turn of layer II/III pyramidal cell activity as a
function of delay time relative to the network
activity peak is shown in (a). A vertical line

and arrow mark the stimulation point. The
plots of network activity for each stimulation
time are presented in (b), demonstrating
the phase-sensitive alterations in the post-
stimulation network activity (Figure reprinted
from [17] with permission from Springer Sci-
ence and Business Media.)

activity was observed when the stimulus was delivered in about the same time or
after the occurrence of the local peak in neuronal activity. A shorter delay time was
observed when the onset of stimulation preceded the local peak in activity (−15 ms
or more). In addition to shorter delay time, some alterations in spatiotemporal
pattern of network activity were observed when the stimulus was delivered before
the local peak in neuronal activity (−60 ms, −20 ms in Figure 5.13(a)).

5.8
Conclusions

Alternative therapies for medically refractory epilepsies have gained considerable
attention. Identifying mechanisms underlying seizure evolution and dynamics
could yield novel seizure-aborting therapies. The network model of seizure
dynamics and evolution aims to identify potential mechanisms associated with
seizure termination. Typical characteristics of epileptic ICEEG include a mono-
tonic decline in frequency of the predominant rhythm prior to seizure termination.
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The predominant frequency decline can be explained in this network model by the
alteration in neuronal membrane excitability, which is maintained by a slow and
calcium-dependent potassium current. In the model, the rate of Ca2+ clearance
in neurons steadily decreases. This is reflected in a decline in frequency of the
synchronous neuronal bursting in the rhythmic network activity pattern and in
simulated LFPs. This mechanism in part may account for the seizure abortive
effect of electrical stimulation. Indeed, in addition to AP induction in axons and the
initial segment of stimulated neurons, the stimulation may momentarily increase
the calcium influx into neurons and hence acutely alter the membrane excitability.
This mechanism has been shown to be important in the termination of recurrent
bursting in models of synaptically connected networks. In the network loop model,
the timing of the stimulus that will terminate bursting is determined for the given
loop length. Once determined, the window for stimulation after an individual burst
is very critical. Stimuli that are applied outside of the relatively narrow window
fail to terminate bursting permanently. This is due to the underlying transient
alteration in neuronal excitability by applied stimulation. Similarly, in a cortical
network model, applied stimulation resulted in momentary suppression of rhyth-
mic activity. The efficacy of the stimulation depends on stimulation parameters,
including the stimulation frequency and on the position and the orientation of
the electrode as well. The timing of the stimulation with respect to the underlying
rhythmic activity also demonstrated a phase dependent sensitivity.
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5.10
Appendix

The neuronal membrane model incorporates two inward currents: INa and ICa,
three outward potassium currents: the delayed rectifier IK, the Ca-dependent
IK(Ca),AHP and the transient IA current, and a leak current IL. Isyn represents the
synaptic current and is described by a double exponential function [14, 15].

Cm
dV

dt
= −INa − ICa − IK − IK(Ca) − IA − IL − Isyn (5.1)

The potential field from a single metallic disk of radius a, with a current I
applied to it, measured in an isotropic medium of conductivity σ is described by
the equation:

�(ρ, z) =
(

I

4πσa

)
arcsin

2a

[z2 + (ρ − a)2]1/2 + [z2 + (ρ + a)2]1/2
(5.2)

σ = 0.3 S−1m
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where z and ρ are Z coordinate and a radial distance from the center of the electrode
in the X Y plane, respectively. The tissue inhomogeneities and CSF loss effects are
ignored. A derivation of this equation can be found in [18].

The action potential production is assumed to take place at the axon initial
segment, with the size of initial segment δ = 30 µm. The threshold function is:

∆2V = V(zAIS + δ) + V(zAIS − δ) − 2V(zAIS) (5.3)

where zAIS is the z coordinate of the axon initial segment. The threshold value of
the electric field gradient for an action potential induction in the initial segment is
3 mV. This value was taken from the literature and the complete list of references
can be found in [17].
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6
Recurrent Cortical Network Activity and Modulation of Synaptic
Transmission

Yousheng Shu

6.1
Introduction

The brain is able to generate a variety of electrical activities that relate to different
behaviors, and during these cortical activities cortical neurons are constantly
bombarded with synaptic inputs that arise from other cortical cells. An individual
cortical pyramidal neuron receives thousands of synaptic inputs, the majority of
which come from its neighboring excitatory neurons and each cortical neuron
innervates a large group of other neurons, typically within a local cortical area, by
forming a few synapses with each of them. Therefore a local cortical network is
built as a combination of convergent and divergent connectivity [1–3].

The excitatory pyramidal neuron not only sends output to other pyramidal
neurons through its recurrent axon collaterals, but also innervates GABAergic
inhibitory interneurons, which compose approximately one-fifth of the total num-
ber of cortical neurons. In return, the inhibitory interneuron sends its densely
branched axons to innervate local pyramidal neurons, which mainly form synaptic
contacts onto their perisomatic and distal dendritic regions. Therefore, the wiring
between excitatory and inhibitory neurons provides the morphological basis for the
operation of the cerebral cortex [4, 5].

It has been proposed that the recurrent excitation and inhibition in the cortex
is well balanced, but there are few experimental studies carried out to probe this
fundamental property of the cortical network. Computational studies have predicted
that the recurrent excitation and inhibition are proportional to each other [6], large
changes in excitation may result in proportional changes of feedback inhibition
to keep the network relatively stable. A stable and balanced network is required
for normal functioning of the cortex, while disruption of the balance between
excitation and inhibition may result in malfunctioning of the cortex, such as
epileptic seizures, schizophrenia and anxiety [7–11].

The arrival of postsynaptic potentials in cortical pyramidal neurons during
the generation of recurrent network activity causes fluctuation of the membrane
potentials in the cell body and generation of action potentials in the axon if the firing
threshold is reached. Traditionally, the all-or-none action potentials are believed
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to be the only form of communication between the neuronal somata and axon
terminals; the traveling of subthreshold voltage changes in the axon is largely
ignored. Here we demonstrate that the spread of the somatic membrane potential
changes along the axon could reach the presynaptic terminals and modulate
postsynaptic responses evoked by presynaptic action potentials [12, 13]. These
findings may shed light on the mechanisms for normal cortical processing and
abnormal pathological conditions, including epilepsy.

6.2
The Ability of the Cortical Network to Generate Recurrent Activity

During slow wave sleep, or under certain types of anesthesia, the cerebral cortex
is able to generate periodic recurrent activities; the slow oscillations [14, 15]. Two
distinguished states could be detected by extracellular recordings: one is the active
state with relatively high frequency firing, termed the Up state; the other is the
quiet state with very low activity termed the Down state. The two states occur
intermittently at a frequency of less than 1 Hz. Combination of anesthetics, such
as urethane followed by injection of ketamine and xylozine, could promote the
recurrent pattern of the two states, but the duration of Up and Down states depends
on the depth of anesthesia. Deep anesthesia results in a shorter Up and longer
Down state, while light anesthesia is associated with a longer Up and shorter
Down state. Since the slow oscillation is also robust during natural sleep [15], this
indicates a normal physiological phenomena of the cortex, instead of the abnormal
consequence of anesthesia.

Intracellular studies in vivo demonstrated that the membrane potential of a cor-
tical neuron was depolarized by 10–20 mV during the Up state. The depolarization
is mediated by the arrival of barrages of excitatory and inhibitory postsynaptic
potentials [14,16–19] and maintains for approximately 0.5–1.5 seconds and results
in the generation of action potentials in pyramidal neurons at 5–20 Hz. During
the intermittent Down state, the membrane potential returns to its resting level
because no, or sparse, postsynaptic potentials are received by a given cortical neu-
ron. The transition between Up and Down states is relatively rapid, it takes about
100–150 ms from the Down to the Up state, and 150–200 ms from the Up to the
Down state.

Not only could the cortical slow oscillation occur in the intact whole brain, but
also it could be spontaneously generated by cortical slices [20–22], indicating that
the ability to generate slow oscillation is a property of a local network independent
of subcortical areas and the large scale of the cortex. The experiments demonstrated
that slow oscillation was less frequent in slices maintained in traditional artificial
cerebrospinal fluid (ACSF), but the slices could generate robust Up and Down states
if they were incubated in a modified ACSF in which the composition of the ionic
medium was changed to more closely match that found in situ. This in vitro prepa-
ration allowed one to explore the mechanisms underlying the generation of slow
oscillations by easily manipulating the extracellular ionic environment, delivering
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neurotransmitter or ion channel-related drugs, and simultaneously probing the
interaction between different neuronal compartments, such as dendrite, soma and
even axon [13, 21, 22].

How could the cortical network generate the slow oscillations? We propose that
the deep layer intrinsic bursting neurons may activate their neighbor neurons
through recurrent excitation and cause the transition from a Down state to an Up
state, while the buildup of the outward conductances during continuous activation
of cortical neurons, such as the Ca2+ and Na+-activated potassium currents, may
contribute to the cessation of the Up state [20]. Although there are other hypotheses
available to explain the mechanisms underlying the generation of spontaneous
slow oscillations, very few studies have been carried out to clarify the situation.

6.3
Cortical Network Activity as Propagating Electrical Waves

The slow oscillation generated in vivo and in vitro is a global activity. In the
anesthetized animal, simultaneous recording from multiple cortical sites indicated
that the slow oscillation is a propagating wave that travels at a speed of approximately
100 mm s−1 [23]. In cortical slices, the activities are propagating at a considerably
lower velocity (approximately 10 mm s−1), presumably owing to the isolation of the
small network from the whole brain [20].

The slice preparation allowed us to find out where the slow oscillation first
starts. We arranged a one-dimensional electrode array (16 multiple unit recording
electrodes) vertically on a cortical slice from the pia to the white matter. The
recordings revealed that the activity starts first at layer V, and then propagates to
layer VI and superficial layers. Cross-correlation between the activity in layer V
and that of other layers showed that the activity in layer V leads the activities in
other layers. To answer the question whether or not there is a specific location
in layer V cross-cortical columns that could always generate the network activity
first, we performed similar experiments by arranging the 16 electrodes only in
layer V. The results showed that the activity could be generated first at any
location a cross the electrodes, although the probability of first generating an
Up state at some spots is higher than other locations. These multiple electrode
recordings revealed that, among the six cortical layers, layer V generates the slow
oscillation first, but no specific location in layer V always generates network activity
first.

Local excitation by puffing glutamate could initiate the Up states. Again, with
the 16 electrodes, we recorded the spontaneous activities in layer V; brief injection
of glutamate to one of the electrode locations could reliably trigger an Up state if
the injection took place after a delay that was long enough from the cessation of
the previous Up state. Increasing this delay resulted in an increase in the duration
of the evoked Up states. As soon as a new wave of activity was initiated by the
injection of glutamate, the activity propagated across the electrodes. Interestingly,
if we puffed glutamate at the two ends of the electrode array simultaneously, the
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evoked activities propagated across the electrodes and collapsed in the middle,
indicating that the refractory mechanisms controlled the timing of the next round
of activity1).

6.4
Balance of Excitation and Inhibition during Cortical Network Activity

During the Up state, the cortical neuron was bombarded with barrages of
postsynaptic potentials including excitatory and inhibitory PSPs; as a result, the
membrane potential was depolarized and kept relatively stable for 0.5–2.5 seconds
[15, 24]. Theoretical studies have predicted a strong relation between the ampli-
tude of recurrent excitation and inhibition in cortical networks, resulting in a
proportionality of theses two feedback signals [6]. If this is the case, during the Up
state, the postsynaptic currents should have a stable reversal potential somewhere
between −75 mV (the reversal potential for Cl−-mediated IPSPs) and 0 mV (the
reversal potential for AMPA receptor-mediated EPSPs).

Indeed, voltage-clamp experiments in the cortical pyramidal neuron [22] showed
that the Up state currents reversed at approximately −30 mV, and at this mem-
brane potential the current associated with the Up state was surprisingly stable
(Figure 6.1) during the entire period of time. The recordings were done with sharp
electrodes filled with CsAc and QX314 to reduce the voltage-gated potassium and
sodium currents. To reveal the dynamic changes of both excitatory and inhibitory
conductances and the relationship between them, we held the membrane potential
of cortical neurons at different levels ranging from −80 to +30 mV and moni-
tored the Up state currents at each membrane potential level. Calculation of the
changes in total membrane conductance revealed a steady increase followed by a
decrease. Excitatory and inhibitory conductances could be derived from the total
conductances because we knew the reversal potentials for EPSCs and IPSCs and
the I-V relation at each time point during the Up state. Plotting the inhibitory
conductance as a function of excitatory conductance revealed their relative linear
relationship, indicating that excitation and inhibition are precisely proportional and
increase or decrease in a balanced manner (Figure 6.1). This finding provides direct
experimental data supporting the theoretical assumption; the balance of feedback
excitation and inhibition during recurrent cortical activity.

6.5
Initiation and Termination of Cortical Network Activity by Electrical Shock

To investigate whether or not Up states could be initiated and terminated through
the activation of synaptic pathways, we delivered electrical shock to activate neuronal
elements in layer V (close to the recording electrode), layer II/III, or in the border

1) Shu and McCormick: unpublished observa-
tions
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Fig. 6.1 Recurrent cortical activity is gen-
erated by a balance of excitation and in-
hibition. (a) The prefrontal cortical slice
maintained in vitro spontaneously generates
slow oscillations. Simultaneous extracellular
multiple-unit (MU) recording and intracel-
lular recording from a layer V pyramidal
neuron reveal the two intermittent states; the
Up and Down state. The action potentials
are truncated. (b) Voltage-clamp recording
demonstrates that the Up state currents
have a reversal potential around −30 mV.
(c) Averaged currents during the Up state at
holding potentials from −70 to +30 mV. Sev-
eral raw current traces at +30 mV are shown
with the average for comparison. The neuron
was recorded with sharp electrode filled with
CsAc and QX314 to minimize the contribu-
tion from K+ and Na+ currents. (d) Reversal

potential is relatively stable during the Up
state. (e) Calculation of the total conduc-
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conductance (Gi). Note the relationship be-
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(f) Linear relationship between Ge and Gi

indicates the proportionality between excita-
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of white matter and layer VI right below the recording electrode. Single electrical
stimulation resulted in initiation of an Up state whose duration depended on the
intensity of the stimulus. Increasing the intensity of the stimulation decreased
the duration of the Up state, such that a strong electrical shock that was about
four times the threshold could only evoke a brief burst of activity (approximately
20 ms). Intracellular recordings revealed that strong stimulation resulted in big
and prolonged IPSPs or IPSCs, such that the evoked activity could not sustain.
Interestingly, the same electrical shock that applied to initiate an Up state could
also cause the cessation of the network activity depending on the time since the
onset of activity and the strength of the stimuli. The intensity of the stimuli is
also critical for the efficiency of termination of the network activity. Relatively
weak stimuli (20–80 µA) could not stop the activity, although it was able to
initiate the Up states reliably. With modest intensity (80–200 µA), the same stimuli
could cause a transition from the Up state to the Down state, but only after a
delay, the duration of which depended on the stimulus intensity. Strong stimuli
(200–500 µA) could stop the UP states efficiently at an inter-stimulus interval as
short as 100 ms [22].

Why could the delivery of the same stimuli result in both initiation and cessation
of the Up states? The neuronal substrates in the network may contribute differently
to the termination of the network activity; therefore, we performed intracellular
recording from excitatory and inhibitory neurons to monitor their firing behavior
in response to the starting and stopping stimuli.

The excitatory pyramidal neurons either discharged a single action potential or
failed to fire in response to the starting and stopping stimuli, but the stopping
stimuli more reliably evoked an action potential across trials, and the latency jitter
of these action potentials is significantly less than the responses evoked by the
starting stimuli. Therefore, the excitatory neurons were more synchronous after
the stopping stimuli; consequently the increased synchronization of pyramidal
neurons may switch the network activity to a refractory period.

On the other hand, the GABAergic inhibitory fast-spiking neuron could generate
more than one action potential in response to both starting and stopping stimuli.
In comparison with the response evoked by the starting stimuli, the stopping
stimuli triggered more action potentials and fired at higher frequencies. These
effects appear to result largely from the depolarization associated with the Up
state, because close examination of the PSP barrages evoked by the start and stop
stimuli, after hyperpolarization to prevent the generation of action potentials, failed
to reveal marked differences in the amplitude time course of these events. These
results suggest that the increase in responsiveness of inhibitory neurons may result
in more inhibition and cause the cessation of the Up state [22].

Inconsistent with the current-clamp results, the voltage-clamp recording
experiments revealed that the PSCs evoked by the stopping stimulus had a
more hyperpolarized and prolonged reversal potential than that induced by the
starting stimulus. Holding the membrane potential at 0 mV to isolate IPSCs, the
recordings directly demonstrated that the stopping stimulus evoked an IPSC that
was significantly larger than that evoked by the starting stimulus [22].
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6.6
Epileptiform Activity Results from Imbalance of Excitation and Inhibition

The balance of excitation and inhibition is critical for the generation of normal
Up states, while an imbalanced network resulted in malfunctioning of the cortical
network including the generation of epileptiform activity. Animal models with
either an increase in excitation or a depression of inhibition by pharmacological
manipulations demonstrated experimental epileptic seizures. Similarly, in vitro
experiments revealed that cortical slices bathed with an ACSF without addition
of Mg2+, which is a voltage-dependent blocker of NMDA receptors, could spon-
taneously generate seizure-like activity; removal of inhibition by bath application
of GABAA receptor antagonists, picrotoxin or bicuculline, could also cause the
generation of epileptiform activity [25–27].

6.7
Conduction of Action Potentials in the Axon during Normal and Epileptiform Activity

During slow oscillation and epileptiform activity, cortical neurons were bombarded
with synaptic potentials and discharged action potentials when the summated
PSPs reached the firing threshold. The all-or-none action potentials functioned
as digital signals that traveled along the axon and passed information to the
postsynaptic cells. The fidelity of axonal conduction of action potentials is critical
for cortical processing and may control the pathological changes of the cortex
during seizure-like activities.

Using our newly developed axonal whole-cell recording combined with simul-
taneous somatic recording [13], we calculated the distance between the soma and
the initiation site of the action potential by evoking somatic and axonal action
potentials by current injection in the soma and axon. The results revealed that
the action potential was always generated in the axon initial segment, and the
initiation site was about 46 µm away from the soma. This calculation was based on
the assumption that the velocities of spike propagation from the initiation site to
the somatic and axonal recording site are equal. However, under physiological and
experimental conditions, spikes propagated from the initiation site down the axon
should be faster than back propagation to the soma. In considering the difference
of the conduction velocity, computer models using NEURON simulation environ-
ment [28] revealed that the action potentials are actually initiated in the axon about
38 µm away from the soma.

Although there are lines of evidence showing that the action potentials are
generated in the axon initial segment under the relatively quiescent conditions
of the in vitro slices, the site of fast spike initiation under conditions when the
cortical network is active is still relatively unexplored. With the cortical slices that
spontaneously generate slow oscillation, we were able to investigate the initiation
site of action potentials evoked by the arrival of barrages of PSPs. Our recordings
showed that the axonal action potential always preceded the somatic action potential
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if the axonal recording site was less than 90 µm from the soma, indicating that
the initiation site was closer to the axonal recording site. Additional evidence
demonstrated that the initiation site was in the axonal initial segment because the
somatic action potential preceded the axonal one when the recording site was far
down the axon (more than 90 µm) [13].

During the epileptiform activity, cortical neurons are dramatically depolar-
ized and discharge bursts of potentials with an instantaneous firing frequency
of more than 200 Hz. Simultaneous dendritic and somatic whole-cell record-
ing revealed that action potentials generated during the epileptic bursts were
initiated near the somatic compartment and back-propagated to the dendritic
trees, while simultaneous somatic and axonal recording clearly demonstrated
that the spike initiation site was in the axon initial segment. The depolariza-
tion during the epileptic burst was so large that somatic sodium current was
inactivated quickly after the onset of the burst, therefore the height of somatic
action potentials decreased progressively with the increase in depolarization.
Surprisingly, our axonal recording revealed the initiation and conduction of burst-
related action potentials that were not detected in the soma. These results provide
evidence that under normal (for example, the slow oscillation) and abnormal
(for example, the epileptiform activity) conditions, fast action potentials are pref-
erentially initiated in the axon initial segment and propagate reliably down the
axon [13].

6.8
Traveling of Subthreshold Potentials in the Axon

During the generation of slow oscillation and epileptic seizures, the changes
in the somatic membrane potential are up to 20 mV and 50 mV, respectively,
which result from the integration of synaptic inputs, the activity of intrinsic ion
channels and the accumulation of extracellular K+. The traveling of these somatic
voltage changes along the axon is largely ignored, although there is a huge body
of studies investigating the axonal mechanisms of action potentials since the
discovery of saltatory conduction by Hodgkin and Huxley [29]. Our knowledge
about the function of axons in the central nervous system mainly comes from
the extracellular recordings, and whole-cell recordings from special axon terminals
such as the Calyx of Held in the brain stem [30] and the mossy fiber boutons in the
hippocampus [31]. The axonal tight-seal whole cell recording from the axon bleb
(3–5 µm in diameter) formed during dissection of the cortical slices provides direct
access to the cell membrane of the axon, and solves the problem of inaccessibility
to the patch pipette of the thin axon [13].

With the axonal whole cell recording (Figure 6.2), surprisingly, we found
that the subthreshold membrane potential changes that associated with the
Up states in the soma of layer V pyramidal neuron could spread far down
the axon with a length constant of 417 µm. That is, somatic voltage changes
decreased to 37% when spread to this axonal site. The axonal form of synaptic
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barrages was a close copy of that recorded in the soma, with some attenuation
at higher frequencies in the axon. Consistently, DC current pulse injection
(−0.2 nA, 500 ms) through the somatic recording pipette, results in membrane
potential changes in the soma and axon. Calculation of the length constant
revealed a slightly longer distance (455 µm) than the traveling of barrages
of PSPs, presumably due to the effect of the low pass filter of the axonal
cable [12].

Similarly, during the generation of epileptiform activity, the enormous depo-
larization could propagate long distances along the main axon. Simultaneous
recording from the soma and axon revealed that somatic membrane potential
changes are bigger than those recorded in the axon, and this might be the reason
why the height of somatic action potentials were significantly reduced but axonal
action potentials were relatively well preserved [13].

6.9
Modulation of Intracortical Synaptic Transmission by Presynaptic Somatic Membrane
Potential

The spread of a subthreshold potential along the axon may influence the excitabil-
ity of the axon and participate in modulating synaptic transmission. According to
the length constant, the subthreshold potential could travel along a large portion
of the axon, but we don’t know whether or not there are presynaptic terminals
distributed within this portion of the axon. To examine how many presynaptic
boutons that are distributed in the axonal compartments are close to the soma,
we labeled some layer V pyramidal neurons in cortical slices by injecting bio-
cytin followed by DAB staining, and used neurolucida to detect the location of
presynaptic boutons. The results revealed that approximately 155 putative bou-
tons were distributed along the axon collaterals within the first 500 µm from
soma, and about 270 putative boutons within the first 1 mm [12]. These values
are probably a significant underestimate of local synaptic connectivity, owing to
the cutting of axon branches and limitations of axonal staining using the slice
technique.

Do the changes of membrane potential in the axon terminals influence synaptic
transmission? To answer this question, we performed pair or triple recordings from
layer V pyramidal neurons that have excitatory synaptic connections (Figure 6.2).
The somatic membrane potential of the presynaptic cell was depolarized and hyper-
polarized to mimic the Up and Down states, or kept at various membrane potential
levels through constant current injection, an action potential was initiated by a
brief (1–2 ms) positive current pulse injection every second, and the postsynaptic
responses were averaged corresponding to each membrane potential level of the
presynaptic cell. Our recordings revealed that, indeed, the averaged amplitude of
EPSPs correlated well with presynaptic membrane potential (Figure 6.2), depolar-
ization in the presynaptic soma resulted in facilitation of postsynaptic responses
at a rate of approximately 30% per 10 mV, indicating the synaptic transmission
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(a) Simultaneous whole-cell recording from
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tials. Note the facilitation induced by presy-
naptic somatic depolarization. (Reproduced
from [12].)

between cortical pyramidal neurons not only through action potential-mediated
digital communication but also through membrane potential-mediated analog
communication [12]. Similarly, in some other central synapses, simultaneous
recording from a presynaptic terminal and a postsynaptic cell revealed this hybrid
form of synaptic transmission [32]. It was found previously that the mixture of
digital and analog modes of communication occurs in some invertebrate synaptic
connections and is characterized by a change in the amplitude of the synaptic
responses evoked in the postsynaptic cell by a change in the membrane potential of
the presynaptic neuron [33–37]. In these cases, it is believed that synaptic release
sites are sufficiently electrotonically close to the presynaptic soma to be affected by
changes in somatic membrane potential.
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Since the huge depolarization associated with epileptic seizures could spread
efficiently down the axon [12, 13]; therefore, we reasoned that this depolarization
in the soma of a pyramidal neuron should modulate the synaptic transmission
induced by the action potentials that reached the axon terminals during the
burst. It is difficult, however, to probe the synaptic changes during epileptiform
activities due to the large fluctuations in the membrane potential and membrane
conductances in the postsynaptic cells.

6.10
Mechanisms Underlying EPSP Facilitation Induced by Somatic Depolarization

How could the depolarization of the axon terminals of pyramidal neurons cause
enhancement of postsynaptic responses? One possible mechanism is that depo-
larization in the terminal may result in small increases in intracellular calcium
concentration [38]. To test this possibility, we recorded from neurons using
pipettes that contained the calcium chelators BAPTA at a concentration of 25 µM
and either 10 mM EGTA or 1 mM EGTA. Higher concentrations of EGTA signif-
icantly reduced the number of pairs that showed somatic depolarization-induced
facilitation of EPSPs, indicating that Ca2+ is a mediator for the expression of EPSP
facilitation.

An Increase in intracellular calcium concentration may result from the activation
of calcium channels induced by subthreshold depolarization of the membrane
potential. Patch-clamp recording from the terminal of Calyx of Held revealed
that modest depolarization could activate certain calcium channels and conse-
quently caused an increase in background Ca2+ concentration and resulted in the
enhancement of postsynaptic responses [30].

Broadening of action potentials [36, 39] is another mechanism for an increase
in the calcium concentration in the axonal terminal. Whole cell recording
from soma and axon simultaneously demonstrated that somatic depolariza-
tion from −85 to −45 mV did not significantly change the width of action
potential evoked in the soma by a brief current pulse, while the duration
of the axonal action potential increased dramatically with somatic depolariza-
tion. Although the amplitude of the action potentials decreased, the integrated
area under the axonal action potentials increased with the depolarization in the
soma [12].

It has been shown that the cumulative inactivation of an A-type potassium
current could prolong the action potentials in the presynaptic terminal and cause
enhancement of the postsynaptic responses [31]. Axonal whole cell recording
revealed that a selectively expressed potassium current was responsible for the
broadening of axonal action potentials. This type of potassium current was sensitive
to a low concentration of 4-AP and α-dendrotoxin. Modest depolarization of the
axon could activate this current rapidly but inactivated very slowly over a time
period of six seconds. The inactivation time period is consistent with that of the
broadening of axonal action potentials and EPSP facilitation induced by presynaptic
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somatic depolarization [40]. Future experiments would focus on the contribution
of axonal ion channels to the pathogenesis of epileptic seizures.

6.11
Summary

1. The cortical recurrent network activity is generated through a balance of
excitation and inhibition.

2. Recurrent network activity was generated first in the layer V and propagated
vertically to the superficial layers and horizontally across cortical columns.

3. Activation of synaptic elements by electrical stimulation could start and stop
the recurrent network activity. Increased synchronization of the excitatory
pyramidal neurons and increased excitability of the inhibitory interneurons
may cause the network activity to stop.

4. Somatic membrane potential changes associated with the UP states and
epileptiform activities could spread along the axon and reach the presy-
naptic terminals. Depolarization of the axon terminals could facilitate the
postsynaptic responses induced by presynaptic action potentials.

5. Broadening of action potentials induced by somatic depolarization may
cause more calcium influx in the axon terminal, and participate in modulat-
ing synaptic transmission.
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7
Epilepsy as a Disease of the Dynamics of Neuronal
Networks – Models and Predictions

Fernando Lopes da Silva

7.1
Introduction

In this chapter I consider some general principles of how the transition to an
epileptic seizure (ictus) takes place from a relatively normal state (interictal) of
brain activity. It is well known that epileptic patients do not seize all the time, so
that there are periods where the patient is free of seizures, which fortunately are
very long, as a rule, and relative short episodes where seizures occur. Therefore a
theory that has the objective of explaining why and how seizures occur should also
explain why the same brain can demonstrate long periods without seizures.

The main question that is the focus of the present discussion is whether
precursors of an ictal manifestation, that may be considered to be characteristic of
a proictal state may be identified reliably. We prefer to introduce the term proictal
rather than to use the more common term preictal; indeed preictal denotes just
the activity immediately preceding the seizure, which is, of course, always present,
whether or not it may be causally related to the transition from an apparently
normal EEG signal to a seizure; proictal implies that the activity reflects a state of
excitability of the underlying neuronal networks that may lead to a seizure.

A discussion about general principles of brain dynamics is relevant in this context,
since it is difficult to develop and interpret EEG data obtained in epileptic patients
and very often analyzed by sophisticated analytical methods, without having a
general theoretical framework of the dynamics of brain activity that may account
both for normal and epileptic neuronal activities. In this context, we assume
that in the epileptic brain, some neuronal networks can display different kinds
of dynamical states because they possess an abnormal set of control parameters.
In other words, they may have bi(multi) stable properties. This means that, in
addition to a normal steady state, they also have an abnormal one characterized by
widespread synchronous activity, and that the transition between these two states
may occur more or less abruptly.

This accounts for the two main characteristics of epilepsy: (a) that an epileptic
brain can function apparently normally between seizures (i.e., during the interictal
state); and (b) that the seizures occur in a paroxysmal way, thereby impairing brain

Seizure Prediction in Epilepsy. Edited by Björn Schelter, Jens Timmer and Andreas Schulze-Bonhage
Copyright  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40756-9
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functioning to a lesser or greater extent. In this sense, epileptic disorders may be
considered especial cases of the large class of dynamical diseases, meaning those
pathophysiologic states characterized by the occurrence of abnormal dynamics, a
theoretical concept proposed by [1] that we [2–4], and others [5], have used in the
context of epilepsy.

The theory of nonlinear dynamics offers the possibility of understanding, in
formal terms, how the occurrence of the manifestations of dynamical diseases
takes place. In the case of epilepsy, the basic question is how changes in the
dynamics of a neuronal network may occur, such that paroxysmal widespread
synchronous oscillations abruptly emerge. It is often difficult to study these
changes in the human brain due to the inherent limitations of obtaining detailed
neuronal data from recordings in the human brain. Therefore, it is important to
investigate these phenomena in experimental animals that provide reliable models
of some types of epilepsy. Thus, in this chapter, we focus also on some experimental
observations obtained in epileptic animals, that shed light on the main question
of how dynamical changes leading to seizures can occur in well defined neuronal
networks in vivo.

We consider two cases which are paradigmatic for two different kinds of routes
to seizures:

• Case 1: The occurrence of Spike-and-Wave discharges in the thalamo-cortical
system, typical of absence seizures.

• Case 2: The occurrence of seizure activity in the hippocampus.

7.2
Experimental Observations – Case 1: The WAG/Rij Rat as a Genetic Model
for Absence Epilepsy

The WAG/Rij rat model is a well established animal model of absence epilepsy [6].
Similar to the EEG characteristics of human absences, Spike and Wave Discharges
(SWDs) occur in the EEG of the WAG/Rij rat as the animal displays freezing
behavior for a few seconds, usually accompanied by vibrissal twitches [7].

Typical SWDs start and end abruptly. We found [8, 9] that SWDs are initiated in
the facial somatosensory cortex and propagate to other cortical areas (Figure 7.1)
and to the thalamus. This was confirmed in another experimental rat model
of absences: the Genetic Absence Epilepsy Rats of Strasbourg (GAERS) where
[10] it was found that the display of SWDs in the local ElectroCorticoGram
(ECoG) coincides with rhythmic membrane depolarizations superimposed on a
tonic hyperpolarization of layer IV neurons, that occurs abruptly (Figure 7.2).
Furthermore it was demonstrated in a detailed microelectrophysiolgical study
[11] also in GAERS that layer VI corticothalamic neurons act as ‘drivers’ in
the generation of SWDs in the somatosensory thalamocortical system. These
observations reveal also that SWDs occur abruptly in this animal model.

A general conclusion that may be drawn from these experimental studies
is that the SWDs, characteristic of absence seizures, tend to occur without
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Fig. 7.1 Cortico–Cortical Associations: bi-
laterally symmetric sites. Recordings from
the cortex of a WAG/Rij rat during an ab-
sence seizure showing (a) an episode of
Spike-and-Wave Discharges (SWDs). Plots
showing (b) the intra-hemispheric nonlinear

associations and (c) corresponding time
delays. In (d) it is shown that the average
of intra-hemispheric associations (average
of 6 rats) is smaller than the average inter-
hemispheric association between homolo-
gous cortical sites. (Adapted from [8].)

a clear proictal electrophysiological ECoGraphic pattern. In order to under-
stand in more general terms how this abrupt change of neuronal dynamics
takes place a computational model has been constructed and proved to be
useful.

7.3
Computational Model of the Thalamo–Cortical Neuronal Networks

With this objective we constructed a computational model [12] of absence epilepsy
that included features of a distributed neuronal network with respect to different
synaptic currents and membrane properties (for example Ca2+ channels, burst fir-
ing mechanisms) and which was designed as a circuit consisting of interconnected
neuronal populations. That is, we did not simulate the explicit behavior of individ-
ual neurons but rather modeled the activity of populations of interacting neurons
integrating neuronal and network properties. In this way we assumed that such a
computational model can take into account the most relevant (patho)physiological
experimental findings to simulate the dynamics of brain activity as transitions to
absence seizures occur.
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Fig. 7.2 Interictal–ictal transition. Recording in a GAER rat
of a SWD in the local ECoG and the corresponding intra-
cellular recording of a layer IV neuron. Note that the two
phenomena coincide. The latter displays rhythmic membrane
depolarizations superimposed on a tonic hyperpolarization
of this layer IV neuron. (Adapted from [10].)

A number of detailed, distributed models of thalamic and thalamo–cortical net-
works were recently developed (e.g., [13–16]). These models have given insight into
some basic neuronal mechanisms of SW discharges, but do not address specifically
the most essential issue of this type of epileptic activity: that a given thalamocor-
tical loop can display both kinds of activity – normal brain activity and epileptic
seizures – without specific adjustment of parameters being expressly made.

Thus, the main aim of the computational model study was to find out the
mechanisms responsible for transitions from normal activity to paroxysmal SWDs.
Without entering into detail (see [12, 17, 18] for details of the model studies) we
may state that the model studies (Figure 7.3) revealed that: (i) SWDs result from
dynamical bifurcations that occur in a bistable neuronal network; (ii) the durations
of paroxysmal and normal epochs have exponential distributions, indicating that
transitions between these two stable states occur randomly over time with constant
probabilities; (iii) the probabilistic nature of the onset of paroxysmal activity
implies that it is not possible to predict its occurrence; (iv) the bistable nature
of the dynamical system allows that an ictal state may be aborted by a single
counter-stimulus.

7.4
Model Predictions

The main prediction of the model is that the transition from normal brain activity
to an absence seizure characterized by SWDs occurs randomly (Poisson process);
this implies that the distribution of the intervals between seizures should be
exponential. This prediction was tested by calculating the distributions of durations
of seizures and of inter-paroxysm intervals as described by [17]. The prediction
could be confirmed both in the genetic rat models and in some human cases, by the
fact that these distributions in many cases are exponential (Figure 7.4), although
not in all cases. This led us to perform a more extensive investigation of these
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distributions in several conditions, both in human and animal models, and to apply
a more general statistical model to describe the distributions. This model can be
described by a gamma distribution:

y = C xα−1 e−x/β,

where α and β are distribution parameters and C is a normalization constant.
Gamma distributions are flexible in terms of their overall shape. The shape
is determined by the shape parameter, α; for α < 1, the distribution has the
maximum at the origin and is monotonically decreasing, for α = 1 the distribution
has an exponential shape, and for α > 1, the distribution has zero at the origin and
maximum at non-zero values. As derived analytically an exponential distribution
of intervals between events corresponds to a Poisson process, in which events
occur along time with constant probability of occurrence. In [17] the results of this
investigation are described in detail, but here we summarize the main conclusions
as follows: (1) the distribution of shape parameter α, can be close to one in both ictal
and interictal recordings as already indicated above; (2) the dynamical processes
during ictal epochs are, in general, different from those during the interictal states;
(3) a majority of ictal epochs have an α parameter larger than one. This suggests
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that deterministic time-dependent mechanisms are involved in seizure termination
and the probability of terminating an ictal state increases with time spent in that
state. On the contrary, interictal epochs are described predominantly with an α

parameter smaller than one. This suggests that the longer the system remains
in a seizure-free state, the higher the chance it shall remain seizure-free in the
immediate future. This kind of dynamics results in a grouping of seizures, i.e.,
in the appearance of clusters of ictal episodes separated by long interictal periods.
Seizure clustering has been reported in other studies. In [19] it was reported that,
in about half of epileptic patients with different seizure types, the occurrence of
seizures was indistinguishable from a Poisson process, while other patients showed
seizure clustering.

Thus the studies using the computational model led to the conclusion that deter-
ministic time-dependent mechanisms have to be assumed, with respect to seizure
termination. This implies that we have to consider which neuronal parameters
may change as a seizure progresses. We may hypothesize that candidates for such
a ‘use-dependent parameter’ might be the extracellular accumulation of K+ in
glial cells affecting the excitability of neurons, an increase of intra-cellular Ca2+

leading to an increase of cAMP that can cause an increase of the Ih current, or
use-dependent changes in the dynamics of GABA receptors, or a combination of
all these factors.

In conclusion, the model has not only showed that the transitions to absence
seizures can occur randomly, but also that additional physiological mechanisms
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have to be tested to explain some aspects of specific statistical distributions,
particularly of the durations of seizures.

7.5
Experimental Observations – Case 2: Hippocampal Seizures

A recent in vitro study in hippocampal slices revealed some interesting findings
that shed light on the question that we are dealing with here; namely, whether or
not in this kind of epileptic seizures a proictal state can be identified, in contrast
to what was observed with respect to absence seizures (Figures 7.2, 7.3 and 7.4).
The study of [20], showed that, before a full-blown seizure may be seen, there
is a gradual change in electrophysiological properties that becomes manifest as
a build-up of the neuronal firing frequency variance index within the affected
neuronal population (Figure 7.5). This implies that a proictal state with special
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Fig. 7.5 Disinhibition-induced synchroniza-
tion of CA3 population firing (perfusion with
10 µm bicucculine). Recordings obtained in
hippocampal slices (CA3 sub-area) where
an in vitro ‘seizure’ was induced by perfu-
sion with 10 µm bicucculine. A–C, multi-unit
activity recorded by an electrode in the CA3
stratum pyramidale at 2, 6 and 7.5 mins after
perfusion. Note the disinhibition-induced
synchronization of CA3 neuronal popula-
tion firing. D–F, evolution of indices of
excitability over the period of transition to
the ‘seizure.’ D, frequency of all detected
spikes convolved with Gaussian functions
of 100 ms (black) and 1600 ms (gray) reveal
fast and slow variations during the transition

to synchrony. Slow variations reach a plateau
frequency before the first epileptiform dis-
charge (vertical dotted line). Fast oscillations
increase in amplitude before the onset of
fully synchronous firing. E, a sliding vari-
ance index reveals a progressive increase
in coherence of fast fluctuations around the
mean frequency. F, the mean amplitude of
detected action potentials increased only
after the onset of epileptiform activity. This
implies that spike superpositions within
1–2 ms do not occur during the transition
period. Black and gray traces correspond to
smoothing Gaussians of 100 and 1600 ms,
respectively. (Adapted from [20].)
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properties can be identified. Thus these observations show that the evolution of
the excitability state of the neuronal population in these hippocampal slices differs
sharply from what was seen in the case of SWDs in absence epilepsy. Assuming
that these in vitro observations are representative of the in vivo situation in patients
with mesial temporal lobe epilepsy, and taking these findings together, we may
draw the following conclusions.

Theoretically, we may consider that the transition to an epileptic seizure can
occur basically according to two models:

• Bi- (or multi-stable) systems where jumps between two or more pre-existing
attractors can take place, caused by stochastic fluctuations (noise) of any
input – Case 1.

• Parametric alteration, or deformation, that may be caused by an int-
ernal change of conditions or an external stimulus (sensory in reflex
epilepsies) – Case 2.

The main question in cases of the second type is how to detect the special
properties of the proictal state. Many analytical methods have been proposed as
presented and discussed in several chapters of this book and elsewhere (see [21,22]).
Here I will consider only those methods that use a probe – i.e., a given stimulation
protocol – in order to estimate changes in the excitability state of the neuronal
networks that may be characteristic of this proictal state.

7.6
Active Observation: Stimulation with ‘Carrier Frequency’ – Changes in Phase
Clustering Index (PCI)

We found previously that in cases of photosensitive epilepsy where epileptic
patients were stimulated with intermittent light stimuli [23], the relative Phase
Clustering Index (rPCI, Figures 7.6 and 7.7) in the gamma frequency band
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(see [24] for technical details) was significantly increased some seconds before
the seizure occurred. This finding led us to investigate whether the rPCI of
EEG signals in patients with mesial temporal lobe epilepsy could also have a
predictive value using an active stimulation paradigm. With this objective we
stimulated patients with indwelling electrodes in the hippocampal formation using
short bursts of electrical pulses, five seconds long, at a frequency of 20 Hz,
repeated at intervals of 20 seconds over long periods of hours, and even days.
We may call this stimulation paradigm a carrier frequency modulation probe
[25]. The relative phase clustering index (rPCI) computed for all signals and
all stimulated epochs of six patients, was found to be larger for electrode sites
near to the seizure onset site. Even more interesting was the finding that it
was possible to forecast the probability of a seizure occurring within a certain
time based on the values of rPCI estimated at a given moment in time. For



106 7 Epilepsy as a Disease of the Dynamics of Neuronal Networks – Models and Predictions

Bifurcation dynamical
model: jump
transition – Case 1.

Deformation model:
gradual transition –
Case 2.

45 Time

Time

Perturbation

45 40 35 30 25 20 15 10 5

45 40 35 30 25 20 15 10 5

0
10
20
30
40
50

0
10
20
30
40
50

40
35
30
25
20
15
10

5

45
40
35
30
25

15
10

5

20

(a)

(b)

Fig. 7.8 Two main classes of model that may explain the
transition to epilepsy. (a) The bifurcation dynamical model
showing a jump transition – Case 1. (b) The deformation
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example, in the patient population analyzed in this study, a value of rPCI > 0.6
predicts that a seizure will occur in less than 2 h, with an accuracy >80 %
(Figure 7.7).

7.7
Conclusion

We should consider there to be two main classes of models (Figure 7.8) which may
explain the transition to epileptic seizures:

• The bifurcation dynamical model: jump transition – Case 1; in this case it
does not appear that the transitions to epileptic seizures (absences) can be
predicted.

• The deformation model: gradual transition preceding the epileptic seizure,
i.e., a proictal state can be identified – Case 2; in this case a transition
to a seizure may be predicted on condition that the proictal state can be
appropriately detected. This detection may be based on using analytical
techniques applied to the on-going EEG (passive approach) or it may be
based on measurements made by way in an active approach, i.e., using a
stimulation paradigm to probe changes in the excitability of the neuronal
populations characteristic of the proictal state.
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8
Neuronal Synchronization and the ‘Ictio-centric’ vs the Network
Theory for Ictiogenesis: Mechanistic and Therapeutic
Implications for Clinical Epileptology

Ivan Osorio, Mark G. Frei, Ying-Cheng Lai

8.1
Seizures and Neuronal Synchronization: Increased or Decreased Relative to Interictal
Values?

Automated contingent (‘closed-loop’) seizure blockage using electrical stimulation
(ES), an emerging and promising therapy for pharmaco-resistant epilepsies in
humans [1,2], would benefit from development of mechanisms-based approaches.
Its efficacy for pharmaco-resistant epilepsy is critically dependent upon knowledge
of the mechanisms and the dynamics of seizure generation and termination.
Currently, the choice of stimulation parameters, such as frequency, is largely
based on a limited animal literature. Temporal evolution of spectral (decreases
in frequency as the seizure progresses) and other signal features are ignored
and possibly more importantly, neuronal phase information and, through it,
the prevailing level of neuronal synchronization during seizures. Given that
changes (increases or decreases) in neuronal synchronization levels appear to
be causally related to spontaneous onset and termination of seizures [3–5], real-
time quantification of their spatio-temporal evolution with reference to their
interictal values may be valuable for selection, and if necessary adaptation of ES
parameters, to optimize therapeutic efficacy. Investigation in humans of signal
features correlated with seizure blockage and non-blockage, in response to local or
remote ES of the epileptogenic zone(s) [1], would advance this therapeutic modality.
This may be accomplished by performing statistical comparisons of certain signal
features extracted from blocked and non-blocked seizures, using novel analysis
techniques.

While recent findings [4–7] challenge the widely accepted notion that seizures
are the expression of neuronal hypersynchrony, it is likely that departures in
the level of neuronal synchronization from values underlying optimal brain
function may manifest as epileptic seizures. Several additional lines of evi-
dence do not support neuronal hypersynchrony as the only network mechanism
underlying the generation of generalized, spike-slow wave, or partial (‘focal’)
seizures:

Seizure Prediction in Epilepsy. Edited by Björn Schelter, Jens Timmer and Andreas Schulze-Bonhage
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1) Multi-site, simultaneous EEG, extracellular, and intracellular recordings from
various neocortical and thalamic nuclei of penicillin-treated cats, revealed
that what is recorded from the scalp as sudden, generalized and bilaterally
synchronous spike-wave bursts, is the product of neuronal activity with time
lags between their spike trains and changes in their temporal relations [8].

2) Dual-cell patch-clamp of CA1 pyramidal neurons in hippocampal slices
revealed that, during seizure-like events, the degree of inter-neuronal syn-
chronization decreased compared with interictal periods; moreover it was
observed that synchronization increased as seizures neared their end [4].
Similar observations have been made in humans [5] and in a model of focal
neocortical epilepsy (Figure 8.1).

3) Application by our research group of a novel measure of synchronization to
ECoG from humans with intractable epilepsy showed increases during the
ictus in certain cases and decreases in others [5–7] which underscores the
importance of taking the synchronization level into account in the develop-
ment and implementation of efficacious therapeutic strategies. For the case
in hand, if the mechanism of spontaneous termination of certain seizures
in certain regions is increased phase synchrony (Figure 8.1), interventions
that mimic this putative mechanism are likely to reproduce that effect.
Thus, in this case, ‘synchronizing’ influences [9] in the form of, let us say,
low-frequency, low-intensity ES delivered to the site of origin, may be more
likely to have a beneficial effect than those causing ‘desynchronization’ as
they are likely to prolong the state of low neuronal phase synchrony that
sustains the seizure [4, 10]. Parameters that induce activation (‘desynchro-
nization’) [1, 11, 12] would be used if phase synchronization were increased,
relative to its interictal value, as they have proved to be efficacious in blocking
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Fig. 8.1 Temporal evolution of PSL val-
ues (y-axis; only one channel shown) of
a seizure induced with topical penicillin
applied to rabbit cortex. PSL increases briefly
and minimally shortly after onset (32–34 s),
remaining at low levels until approximately

62 s, when it begins increasing slightly
and gradually as the seizure nears its end;
a marked and rapid increase occurs at the
ictal–postictal transition. Similar changes
were observed in human seizures.
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Fig. 8.2 PSL values (y-axis; logarithmic scale)
of two seizures originating from the same
subject/site (similar morphologies, ampli-
tudes and frequencies), treated with elec-
tric stimulation shortly (≈4 s) after onset
(vertical dotted line). One seizure (solid)
responds and the other (dashed) does not
respond to ES. Notice the large increase
(almost three orders of magnitude) in PSL
between ‘early’ interictal and ‘late’ (−15 s)
interictal values in the blocked seizure, which
were not observed in the non-blocked. These
results reveal that PSL values of seizures
originating from the same subject/site may
or may not change relative to interictal val-
ues (ictal decreases in PSL also may occur

but are not shown in this example) and
that the response to ES may depend on
signal features such as PSL which cannot
be extracted from power spectral measures.
These findings also point to the importance
of tracking (in real-time) this measure and
of tailoring ES parameters accordingly to
optimize therapy. The lack of effect on one
of the seizures may be related to the fact
that delivery of ‘desynchronizing’ pulses (as
was the case for both seizures) have no
effect on seizures with low synchronization
levels, unlike in those with high levels as
they can be ‘brought down’ to interictal or
postictal values.

epileptiform activity and seizures [1,13–15] (see Figure 8.2). Therapies based,
among other factors, on level of neuronal synchronization would take into
account that the probability of seizure occurrence depends on the state
and degree of cortico-thalamic or intra-limbic interactions which manifest
electrographically roughly as either synchronization or, activation (‘desyn-
chronization’) [16–18]. The ability to track, in real time, the spatio-temporal
behavior of measures such as Phase Synchronization Level (PSL) [7] during
seizures and, based on the degree and direction (increased or decreased
compared to interictal values) automatically select and if necessary, adapt ES
parameters to optimize efficacy, may advance ES as a therapy. The fulfilment
of this objective will lay the foundations for a ‘mechanisms-based’ approach
for the treatment of seizures.
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The recent availability of means for real-time automated quantitative seizure
detection [2, 19, 20] and of implantable devices in humans [2] for contingent
delivery of ES to epileptogenic tissue along with the preliminary evidence of
safety, tolerability and efficacy in humans with pharmaco-resistant epilepsies,
[1, 2] provides further impetus for investigating, how ES alters neuronal phase
synchronization and in turn how these changes correlate with seizure blockage
or with lack of a beneficial effect. This may be accomplished by investigating, in
humans with pharmaco-resistant epilepsies, the existence of significant correlations
between PSL, at the scale (macrocolumns) recorded using depth or subdural
electrodes and the type of response (blockage vs non-blockage) to ES.

The Phase Synchronization Level [6] quantifies, from multi-channel time series,
weak types of synchrony such as transient phase synchronization that are prevalent
(over global or complete synchronization) in complex, non-stationary systems with
high intrinsic (dynamical) noise levels, such as the human brain. PSL was selected
over other existing measures of synchrony [21–23] because it is robust and sensitive,
may be used in real-time (an important consideration for therapeutic applications
with implantable devices) and having been developed by the proponents of this
research, its strengths and limitations are well known to us.

Estimates of PSL in human seizures and of its correlation, if any, with the
therapeutic response, will also increase understanding of seizure dynamics in
the context of synchronization, shedding light into an area of great importance.
Questions such as: When is the delivery of ES during a seizure most likely to
block it? Is the probability of seizure blockage conditioned on the ictal PSL level
relative to interictal values? Should ‘desynchronizing’ or ‘synchronizing’ pulses
be used in a negative or positive feedback control loop? That is, should relatively
‘desynchronized’ seizures be treated with ‘synchronizing’ or ‘desynchronizing’
pulses?, may be properly and systematically investigated. This approach may: a)
shed light on the relation between PSL and ictiogenesis on one hand and PSL
and the probability of seizure blockage or of adverse effects with ES, on the
other; and b) provide valuable information to improve timing, site of delivery of
electrical currents and of the other parameters such as frequency and intensity of
stimulation for increasing efficacy and decreasing adverse effects of ES. It should
be mentioned that interpretation of measures of synchronization is confounded by
volume conduction and the reference electrode [24].

8.2
The ‘Focus’ (‘Ictio-centric’) vs the Network Theory in Ictiogenesis

Historically in clinical epileptology, ictiogenesis has been anatomically and func-
tionally restricted to the so-called ‘focus’ or epileptogenic zone, defined as that from
where seizures originate and electrographic onset precedes or occurs simultane-
ously with clinical manifestations. The concept of an epileptogenic ‘focus’ (or ‘foci’)
connotes that ictiogenesis is largely, if not exclusively, dependent on mechanisms
or dynamics inherent to the neuronal assemblies that make up the ‘focus,’ as if
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independent of, or not susceptible to, intra- or inter-regional (global) dynamical
influences. The ‘seizure focus’ theory that we label ‘ictio-centric’ ignores that the
so-called ‘focus’ remains anatomically and functionally connected, albeit probably
aberrantly or incompletely, to ‘non-intrinsically epileptogenic’ regions and ignores
dynamical links and potential interactions with other regions, that have been
identified in experimental animal models of seizures and epilepsy [25–30] and
also probably in humans [1, 31, 32]. By way of example, the interactions between
epileptogenic and non-epileptogenic sub-regions were investigated on 5 s windows
of ECoG (Figure 8.3(b)) recorded with a 4 × 8 electrode grid (Figure 8.3(a)) placed
on the dorso-lateral right frontal lobe region of a subject with pharmaco-resistant
epilepsy undergoing invasive monitoring for surgical evaluation. High frequency
low voltage seizure activity (waxing and waning) is seen on contacts 2, 10 and
18 and coexists with quasi-periodic epileptiform discharges (contacts 12 and 20)
and slow activity (contacts 13, 21, 22, etc.). The phase synchronization level as
depicted in Figure 8.3(b), represents the weighted level of synchronization of the
signal recorded from each contact/sub-region within the grid and for purposes of
visualization was assigned a color (red: highest; dark blue: lowest).

The phase synchronization level between each pair of electrodes was also
assigned a color (red: highest; dark blue: lowest) and line width (thick: highest
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and lowest levels; thin: moderate levels). The results (Figure 8.3(c)) show, at a
glance, the temporo-spatial (only one frame is displayed) dynamical state of phase
synchronization level of this region. The intricate structure of the graphic, mirrors
the complex and varied interactions within a region where only certain sub-regions
are epileptogenic: subregions with high and low phase synchronization relative to
their surroundings coexist in time. To further facilitate visualization, intermediate
synchronization values were removed leaving only the highest and lowest (Figure
8.3(d)). Two sets of contacts/regions adjacent (≈0.5 cm) to each other (2 & 10;
13 & 21), but separated (2 & 10 vs 13 & 21) by almost 3 cm (Figure 8.3) have,
independently and simultaneously, high levels of phase synchronization; (i) the
high phase synchrony between 2 & 10 is expected given the ECoG activity in those
contacts, but ‘unexpected’ between 13 & 21; (ii) sub-regions 2 & 10 have, during
the ictus, little ‘functional connectivity’ (blue lines or no lines) to all other parts
in this region; (iii) sub-regions 13 & 21 have stronger ‘functional connectivity’ to
other parts; and (iv) sub-region 18 which is adjacent to sub-region 10 and is also
generating ictal activity, has only intermediate phase synchronization with 2 & 10.
These graphics provides clues for systematically investigating and implementing in
real-time therapeutic strategies/parameters. For example, one rational strategy in
this case would be to deliver ‘desynchronizing’ ES to areas 2 & 10 and/or 13 & 21 and
another to increase regional phase synchronization through delivery of appropriate
ES parameters to parts of this region that are ‘functionally disconnected’ or ‘weakly’
connected to others.

The scientific and therapeutic implications of testing the ictio-centric vs the
spatially distributed theory of ictiogenesis would have far-reaching implications.
Prediction of seizures, an objective as valuable as it is elusive, may be feasible if
signal monitoring and analyses are not limited in humans to the epileptogenic zone
as conventionally defined, and for efficacy, contingent or non-contingent therapy is
delivered not only to the epileptogenic zone but also to other regions in the network.
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9

Cellular Neural Networks and Seizure Prediction: An Overview

P. Fischer, F. Gollas, R. Kunz, C. Niederhöfer, H. Reichau, R. Tetzlaff

9.1
Introduction: Cellular Neural Networks

Cellular Neural Networks (CNN) were first introduced by Chua and Yang in
1988 [5]. They have been the subject of numerous investigations by a multidisci-
plinary scientific community and constitute a new paradigm of massive parallel
computation [4, 20]. In principle a CNN is an array of locally coupled dynamical
systems, so-called cells, usually described by a set of coupled nonlinear ordinary
differential equations. Depending on cell coupling weights and initial and bound-
ary conditions, a dynamical behavior which ranges from stable equilibrium states
to chaotic dynamics or to emergent behavior, i.e., structure formation following
self-organizing principles, can be observed. CNN behavior is also referred to as
brain-like computing and can be used to model systems of high complexity.
The hardware realizations combine high computational capacity with low power
consumption and small size [2].

CNN algorithms take advantage of the spatio-temporal paradigm of cellular
computation and yield the possibility of processing multiple signals, e.g., from
various electrode probes together. By using miniaturized hardware realizations
of CNN it might become possible to implement calculation intensive algorithms
on an implantable device for detecting and treating impending seizures by either
warning the patient or taking appropriate counteractive measures.

According to a general definition given by Chua, a CNN is a spatial arrangement
of locally-coupled cells with an input, a state and an output which evolves according
to prescribed dynamical laws. This covers a broad class of nonlinear systems.
Previous and recent work is focused mainly on single-layer networks according
to the standard model with translation invariant linear weight functions having
M × N cells.

A standard CNN can be described by the state equation

ẋij(t) = xij − (t) +
∑

k,l∈Nij(r)

ak,l · ykl(t) +
∑

k,l∈Nij(r)

bk,l · ukl(t) + zij (9.1)
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Here xij(t) denotes the state, yij(t) the output and uij(t) the input of a cell Cij.
The above summation has to be carried out by taking output and input values in
the neighborhood according to Nij(r) = {Ckl : Max(|k − i|, |l − j|) ≤ r, 1 ≤ k ≤ M,
1 ≤ l ≤ N}. This means that, in the simplest case, r = 1, only direct neighboring
cells to Cij are considered. The feedback and feedforward coupling to neighboring
cells is determined by akl and bkl, which will usually be represented in a matrix
form called a template of a CNN. In most cases the cell output yij(t) = f (xij(t)) =
1
2

(|xij(t) + 1| − |xij(t) − 1|) is a piecewise linear function of the cell state xij(t) and
of the cell-dependent bias zij.

A CNN is used to solve a certain problem by applying a two-dimensional input;
initial conditions and boundary conditions in many cases. These have to be specified
for networks having different cell coupling structures.

CNN miniature devices are completely parallel computing systems with stored
programmability having an approximate size of 1 cm2. They have the computing
capability of supercomputers (TeraOps) and can be used directly for real-time
multidimensional signal processing. Compared to classical computers which are
logic machines based on binary logic and arithmetic, CNN Universal Machine
(UM) realizations are locally interconnected analog processor arrays acting on
continuous signals in continuous time. Properties of the dynamical behavior of
CNNs are used efficiently in recent work for the development of new methods in
information processing and in practical applications [3, 6, 7, 24].

CNN can be endowed with optical sensor arrays, i.e., the cell inputs of, e.g.,
a full-range CNN [19a] are the outputs of optical sensors. There, sensing and
processing is performed in one step. The roadmap of the most important Cellular
Visual Microprocessors (CVM) is given in Figure 9.1.
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9.2
Spatio-temporal Signal Prediction in Epilepsy by Delay-type Discrete-time Cellular
Nonlinear Networks (DT-CNN)

In this approach a one-dimensional discrete time version of the Chua–Yang model

xr(tn+1) = −xr(tn) +
∑

j∈N(r)

P∑
p=0

a
(p)
j−r xj(tn)p (9.2)

is used. Considering further more a delay-type cell interaction the prediction
equation

xr(tn+1) = −xr(tn) +
∑

j∈N(r)

T∑
τ=0

P∑
p=0

a
(p)(τ)
j−r xj(tn−τ)p (9.3)

results, which is the state equation of a delay-type discrete-time CNN (DT-CNN).
This polynomial DT-CNN can also be regarded as a spatio-temporal predictor of
the form

x̂r(tn+1) = S[xr−1(tn), . . . , (9.4)

xr−1(tn−T ), xr(tn), . . . ,

xr(tn−T ), xr+1(tn), . . . , xr+1(tn−T )],

with the prediction order T . In a signal prediction task the coefficients a
(p)(τ)
i have

to be determined by minimizing the error function

e(m) =
√√√√ 1

N|N|

N∑
n=1

∑
(j)∈N

(xj(tn) − x̂j(tn))2

< x2
j >

. (9.5)

After each iteration the networks output value represents the estimated signal value
x̂i(tn+1).

In the following, the results for one exemplary case based on the delay-type
DT-CNN (9.3) will be shown and discussed in detail. Taking EEG-signal segments
of 2000 values length (corresponding to 10 s in time) leads to time series of
predictor parameters and prediction errors. To find distinct changes previous to a
seizure onset, which possibly reveal a pre-seizure state, these time series have been
analyzed in detail.

The prediction performance obtained with different DT-CNN (9.3) has been
studied in comprehensive investigations. By taking a varying polynomial order,
different delays and neighborhood ranges into account, several learning algorithms
have been applied.

In this contribution results obtained by a special class of predictory networks
with linear weight functions P = 1, T = 1, and r = 1 have been studied in detail.
The thus-defined network can be considered as a multivariate linear predictor.
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In this case it should be noted that during the prediction procedure only the output
of the center cell is taken to derive the prediction error in order to optimize the
predictor networks parameters. This has been performed for all recordings of all
patients treated so far during our investigations.

The underlying data consist of 16 consecutive sets with lengths between 45
minutes and 12 hours, representing a continuous long-term recording with a
duration of nearly six days. Ten seizures occur from dataset 10 to dataset 16. During
the first long-term examinations analyzing the prediction error an interesting shape
behavior as function of time was revealed before the seizure onsets.

In Figure 9.2 the prediction error (9.5) is depicted for a typical dataset convering
only interictal activity. The error retains a nearly constant moving average during the
complete registration interval. This is assumed to be a typical interictal behavior.
Different behavior can be observed for the dataset including three seizures at
(m = 70, 1700, 2379) (see Figure 9.3). Before each of these seizures an increase in
the prediction error occurs. During this increase the value of e(m) clearly exceeds
the previously observed interictal mean. At the seizure onset a peak followed by
a sharp drop can be noticed in many cases. Then the error mostly returns to its
previous interictal mean value and again suddenly exceeds the mean prior to the
next occurring seizure. This behavior of the prediction error in several data sets
of the analyzed electrode points has been joined to have a different significance,
possibly indicating the assumed pre-seizure states.
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Fig. 9.2 Interictal data: e(m).
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Fig. 9.3 Data with three seizures: e(m) and two datasets
for a male patient. In the interictal phase e(m) is fluctuat-
ing around a so-called interictal mean. During the seizure
phase e(m) increases toward the seizure onset and exceeds
the interictal mean.
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9.3
Identification of EEG-signals by Reaction–Diffusion CNN

The approach described in the following is based on the assumption that non
stationary EEG signals – divided into quasi-stationary, consecutive segments – may
be represented by the output values of Reaction–Diffusion CNNs (RD-CNN).
Particularly, for RD-CNN it has been shown that the existence of locally active
cells is a necessary condition for emergent complex behavior. The signal models
resulting for each segment then can be analyzed with respect to distinct changes
before impending epileptic seizures, indicating a possible transient from an
interictal to a preictal state [8] in the complex ‘human brain’ system.

Reaction–diffusion differential equations can be used to describe various complex
phenomena, e.g., structure formation, particularly in biological systems [25]. One
well-known example in the field of biology is the FitzHugh–Nagumo simplified
nerve conduction model [9,10], a two-component partial differential equation (PDE)
system. Reaction–diffusions are given by

∂

∂t
x(r, t) = f (x(r, t)) + D∇2x(r, t) (9.6)

with the reaction part f (·) and a diffusion term with the second spatial derivatives of
x, denoted by the Laplacian operator ∇2, and the diffusion coefficient given by the
diffusion matrix D. By spatial discretization the PDE system (9.6) can be mapped
to a ODE system [4, 11]

ẋ1,r(t) = f1(x1,r(t), x2,r(t) . . . xm,r(t)) + D1∇̃2
r x1(t)

ẋ2,r(t) = f2(x1,r(t), x2,r(t) . . . xm,r(t)) + D2∇̃2
r x2(t)

.

..

ẋm,r(t) = fm(x1,r(t), x2,r(t) . . . xm,r(t)) + Dm∇̃2
r xm(t)

(9.7)

representing an m-layer RD-CNN. Here the Laplacian has been replaced by its dis-
cretized version. Using first-order finite difference approximations the discretized
Laplacian results in ∇̃2x(t) = xi+1 + xi−1 − 2xi for the one-dimensional case.

In order to derive a CNN algorithm using certain properties of the network
dynamics a concrete representation of the reaction function has to be chosen. With
polynomial weight functions a nonlinear characteristic has been proposed [12, 19]
for CNN, capable of representing a wide range of nonlinear functions by a power
series expansion. Thus polynomials are considered in f·(·) and with this a RD-CNN
state equation for the layer � can be given by

ẋ�,i = P�,�(x�,i) + P�,�−1(x�−1,i) + P�,�+1(x�+1,i) + D�∇̃2x(t)

P�,�′ (xi) =
P∑

p=0

a
(p)
i,��′ (x�′,i)

p.
(9.8)

additionally with the assumption that only coupling between adjacent layers � and
� ± 1 occurs.
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Fig. 9.4 Identification of RD-CNN using segmented EEG sig-
nals. The first value of the segment is taken as the initial
condition. Signal values of neighboring cells are used as
boundary conditions. The network weight function parameter
values are determined by minimizing the error (9.9).

Networks derived from Reaction–diffusion systems with the state equations
(9.8) will now be considered in order to identify the EEG-signal-generating neural
network and further to analyze the parameters obtained by means of the Local
Activity Theory [4] which gives a necessary condition for emergent behavior in the
identifying network. We suppose that no detailed information regarding the exact
dynamic law and the nonlinear weight functions can be derived easily from the
underlying neural network. Thus the network weight function parameter values
have to be determined in a supervised optimization process (Figure 9.4), i.e. by
minimizing the relative mean square error

e(m) =
√√√√ 1

N

N∑
t=1

(χ(t) − x(t))2

χ2
(9.9)

for segment m with cell outputs x and EEG signal values χ.
In our investigations the numerical integration of the state equations has

been performed by the fourth-order Runge–Kutta [1] integration method. Various
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Fig. 9.5 Cell outputs x0 of RD-CNN deter-
mined according to (9.8) with polynomial or-
der P = 3 and reference EEG electrode signal
values χ0 and neighboring electrode signal
values χ−1 and χ+1 for two segments each
of length 50. Only the signal values of the

first segment have been used during param-
eter optimization and an error e(m) = 0.17
has been obtained. Then cell output values
for the next segment t = 51 · · · 100 have
been determined resulting in an error of
e(m1 + m2) = 0.36.

optimization methods have been studied [13] in which the Differential Evolution
(DE) optimization method [22] showed the best performance.

In Figure (9.5) the cell output values of a one-layer RD-CNN according to (9.8)
with polynomial order P = 3 and corresponding EEG signal values are depicted for
two consecutive segments of length 50 while only the first segment has been used in
order to determine the network in a supervised parameter optimization procedure,
i.e., the time points t = 1 · · · 50 have been taken into account only during error
minimization. In the period t = 51 · · · 100 EEG values have been approximated by
output values of the previously obtained CNN. This result demonstrates that the
shape of Brain Electrical Activity can be well represented, even for signal values
that have not been considered during the supervised parameter optimization.

9.4
A CNN-based Pattern Detection Algorithm

Usually, the search of patterns in an EEG signal is associated with a direct
detection of special signal behavior or significant signal shape, e.g., peak and
drop occurrences, increasing peak frequency and so forth. In this contribution the
proposed CNN pattern detection algorithm [14] is based on a statistical analysis of
the level-crossing behavior of EEG signals.

The essential idea of pattern detection for predicting epileptic seizures supposes
that involved areas of the brain are changing their usual way of acting and
entering an other state of behavior. The second presumption is that these behavior
alterations could be imaged by occurrence or non-occurence of specific patterns
which represent different level-crossing behaviors of a signal. Regarding these two
preconditions, one can derive different types of behavior changes of brain electrical
activity as far as the occurrance of patterns is concerned. Two of these types are
shown as an example in the following.
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Type 1 behavior
Type 1 behavior is represented by patterns that occur in the preictal state but not in
interictal states. Detection of this behavior provides a hint for an upcoming seizure.

Type 2 behavior
There are patterns that occur frequently in interictal periods. During this time
the greatest distance between two pattern occurences in time will be taken as a
so-called maximum distance. Detection will consider this non-occurence within
the maximum distance as a hint for an upcoming seizure.

Although it would be sufficient for a successful detection of these two types of
behavior at just one electrode, the exploration of several datasets has shown that
these types occur at different electrodes for different patterns. Now, the question
needs to be answered, as to how the location and exploitation of patterns in an EEG
signal can be accomplished in order to detect the different types of behavior.

9.4.1
Preprocessing the Data

At first, there must be a preprocessing of the EEG data that allows us to adapt the
data to the CNN to perform a pattern detection. Therefore the data first have to be
sliced into segments with as many values as there are cells in the CNN. For a better
understanding of how the pattern detection works on a CNN, a special example
will be shown in the following. In this example a CNN with 72 × 72 cells will be
used. Hence, one has to split the data of a chosen electrode into segments of 5184
timesteps.

The first step of preprocessing is to normalize the data to the interval [−1,1]. For
performing the binarization of the normalized data in the next step a threshold has
to be chosen. For this example a threshold of 0 will be used. Then, every value of
the current segment will be switched to −1 if the value is below the threshold of 0
and to 1, if it is above. The preprocessing is shown in Figure 9.6(a).

9.4.2
Performing the Pattern Detection

The result of the preprocessing is a data segment which only contains the values
−1 and 1. As convention −1 connotes white and +1 connotes black. Now the
5184 binarized values will be filled in the CNN row by row. This CNN then maps
binary inputs to binary outputs. In the next step the patterns have to be created.
Therefore a 3 × 3 CNN is used. The patterns are all possible permutations of black
and white cells of this CNN. In the case of 3 × 3 patterns, there are 29 = 512
possible patterns. Every pattern now will be used to shift it over the 72 × 72 CNN.
In each place the black and white cells will be compared. If there is a match for
this segment and electrode a pixel in a so-called pattern occurance image (POI)
will be turend to black. The POI depicts the segment numbers against the patterns
in a two-dimensional picture. After proving every pattern in each segment of one



9.4 A CNN-based Pattern Detection Algorithm 125

O
rig

in
al

da
ta

se
gm

en
t

O
rig

in
al

da
ta

se
gm

en
t

B
in

ar
iz

ed
da

ta
se

gm
en

t

1 5148
− 2028

+ 2028

+1

−1
51481

1 5148
−1

+1

(a)

B
in

ar
iz

ed
da

ta
se

t

POI

B
oo

le
an

 C
N

N

Pattern detection
Pattern

(b)

Statistical exploration

Fig. 9.6 Two steps of pattern detection. (a) Preprocessing.
(b) Creating the pattern occurence image (POI).

electrode, the POI visualizes the occurrence or non-occurence of all patterns within
the dataset. The creating of the POI is shown in Figure 9.6(b).

9.4.3
Detecting Seizures by POI Evaluation

With the POI, different methods and algorithms have been used for an analysis of
EEG data, e.g.:

1) Typedetection. This allows the detection of behavior changes, although there
is the potential for the prediction of upcoming seizures by identifiying these
changes in time to alert.

2) Time-window analysis. This takes a time-window with a fixed size, which is
moved point by point over the POI. The information within this time-window
will be statistically evaluated in order to improve the typedetection.

It has been found that short-term recordings show a strict type 1 and type
2 behavior. For long-term recordings a generalized pattern detection offers a
determination of preictal states. Actually, there are further investigations that are
concerned with the combination of patterns to obtain a more generalized feature
vector to refine the prediction quality of this method.
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9.5
CNN for Approximation of the Effective Correlation Dimension in Epilepsy

In the following the approximation of the effective correlation dimension procedure
[23] is briefly described in order to illustrate how a computationally complex feature
extraction method has been represented effectively by a CNN algorithm. Lehnertz
and Elger have shown [15, 16, 26] that a feature extraction, based on a so-called
effective correlation dimension, allows characterization of an epileptogenic process
for successive segments of multi-electrode EEG signals.

In order to enable an extraction of this feature in real-time by using implantable
devices, new methods for the approximation of the dimension D∗

2(k, m) by CNN
output values have been developed. Therefore CNN with polynomial weight func-
tions of order p = [1, 9] and neighborhood radius of r = [0, . . . , 4] have been
determined using a parameter optimization procedure [17]. In order to ensure the
determination of fixed output values the error

EMSE =




N2
N2∑
i=1

(yj(tτ)−ŷj)
2

4 : ∀ẋ = 0

1 : ∀ẋ > 0
(9.10)

was used in all simulations where ŷj denotes the value of the reference taken for
the optimization algorithm. Two different CNN analogic algorithms allowing the
determination of the dimension approximation DCNN(k, m) have been studied. The
schemes of the algorithms are given in Figure 9.7. An EEG data segment consisting
of N = 5184 normalized values of brain electrical activity is taken as the initial
condition for the first CNN calculating an intermediate result D∗

CNN(k, m)∗. The
steady state output values of this network are taken as the inital condition to the
second network, which performs the well known diffusion operation dxi

dt = ∆xi(t)
by considering the Neuman boundary condition. In this way 5184 steady state
cell outputs y

diff
j (tτ) = DCNN(k, m) at a certain gray scale level will be obtained

as an approximation of D∗
2(k, m). Thereby, different methods for calculating the

nonlinear weight functions of the CNN have been investigated, and an intermediate
optimization procedure (IRO) and a final result optimization (FRO) procedure have
been studied.

In the first procedure the steady state output of the first network D∗
CNN (k, m) will

be taken for the determination of the EMSE by comparing it to the desired output
yopt(tτ) = DCNN(k, m). Thereby, the nonlinear weight functions of the first CNN
have been calculated in an error minimization procedure. Then the second CNN is
used only for a further improvement of the approximation accuracy. In the second
procedure the cell outputs of the second CNN are taken in the error minimization
process. While in the IRO procedure the weight functions of the first CNN have
been optimized based on an intermediate result, in the FRO the optimization of
the first CNN is performed as well but different from the IRO by taking the cell
outputs of the second CNN.

The CNN approximation DCNN(k, m) of the D∗
2(k, m) has been analyzed in detail

leading to accurate results with an error MSE < 0.08 [14]. There the approximation
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Fig. 9.7 (a) IRO procedure; D∗
2(k, m) is used

as the desired output for all cells of the
first CNN calculation D∗

CNN(k, m). A second
CNN is used after obtaining the optimal
result for the first CNN during the verifica-
tion phase. (b) FRO procedure; the com-
plete algorithm has already been applied

in the determination procedure of the non-
linear weight functions. The desired value
D∗

2(k, m) is directly compared to all cell out-
puts DCNN(k, m) of the second CNN. Only
the nonlinear weight functions of the first
CNN will be altered.

accuracy has been verified by taking different recordings as in the parameter
training. The investigations also have shown that, in most studied cases, higher
polynomial orders in the coupling parameters (p > 2) do not lead to increasing
accuracy, but increase the time of computation. It is remarkable that in all treated
cases accurate approximations are obtained by taking only a few EEG segments of
a certain recording in the approximation process.

These results and those obtained in the recent work of Lehnertz [21] clearly
show that CNN can be efficiently used for the approximation of standard EEG
features. Furthermore, by defining and analyzing new CNN procedures, we have
proved that the application of these networks [18, 24] provide new methods for



128 9 Cellular Neural Networks and Seizure Prediction: An Overview

an improved analysis of the bio-electrical activity of the human brain. The results
obtained in these investigations can lead to a better understanding of neural
phenomena.
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10

Time Series Analysis with Cellular Neural Networks

Anton Chernihovskyi, Dieter Krug, Christian E. Elger, Klaus Lehnertz1)

10.1
Introduction

Time series analysis is a general tool used to study the diversity of natural
phenomena. Generally speaking, the main aim of time series analysis is to efficiently
extract knowledge about the underlying dynamics of the investigated system and to
predict its temporal evolution. Nowadays, numerous different linear and nonlinear
techniques of time series analysis have been developed [1–6]. However, despite a
rigorous theoretical background and reasonable success in various applications, a
reliable analysis of noisy and non-stationary field data is still an unsolved problem.
In the last years it also became obvious that an implementation of particularly
nonlinear time series analysis techniques demands high computational resources,
and is thus very time consuming. This limits the use of these techniques in cases
where a large amount of information has to be processed in real time.

Artificial neural networks (ANN) are computational tools that have already found
extensive utilization in solving many complex real world problems. In general,
an ANN is an array of globally interconnected information processing units. In
contrast to the conventional serial computer architecture ANN are characterized by
intrinsic nonlinearity, high parallelism, fault and noise tolerance, and their ability
to adapt, i.e., to learn a rule from a set of examples [7]. However, the practical use
of ANN in real-world applications has revealed many obstacles. For instance, due
to the global connectivity and an irregular alignment of the individual processing
units, large-scale hardware implementations of ANN are still rather limited. The
concept of Cellular Neural Networks (CNN) provides a possible solution to this
problem. CNN are a subclass of ANN where individual processing units (called cells)
are only locally coupled. This unique feature of CNN enables large-scale hardware
implementations on a modern level of manufacturing technology, e.g., as very large
scale integrated (VLSI) circuits. Despite the restriction to the local connectivity, the
CNN paradigm still offers enough degrees of freedom to solve a great diversity
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of complex problems in various real-world applications [8]. Recent studies in the
field of time series analysis have shown a potential use of CNN to process a large
amount of field data in real time. It was shown that the CNN can be used to
efficiently approximate various nonlinear statistical measures whose evaluation
on a conventional serial computer demands a high number of computational
resources [9–14].

We here present two complementary CNN-based methods for time series analy-
sis. In Section 10.3 the phenomenon of signal-induced excitation waves in excitable
media is introduced. This biologically motivated approach to time series analy-
sis provides an alternative way to instantaneously characterize transient spectral
patterns and synchronous activities in noisy and non-stationary time series. In
cases where a direct and analytical CNN-based solution cannot be achieved, a
CNN can be trained to approximate some statistical measure. In Section 10.4 we
show that, after successful supervised learning on a set of examples, a CNN can
be used to efficiently approximate various synchronization measures and, more-
over, is capable of generalization. In the context of epileptic seizure prediction,
previous studies have shown the existence of a pre-seizure state that is character-
ized by a significant deviation from the mean level of synchronization between
different electroencephalographic recording sites observed during the interictal
state [15, 16]. A robust detection of the degree of synchronization between noisy
and non-stationary signals can improve the anticipation of epileptic seizures. Both
methods provide a possibility of hardware implementations within the framework
of CNN and thus can be used to design a miniaturized detector for transient spectral
patterns and synchronous activities in the EEG. The following section provides a
brief introduction to the concept of CNN and its applications. For further details
we refer the reader to Chapter 9 in this book.

10.2
Cellular Neural Networks

In the late 1980s a new approach for simulating the dynamics of spatially extended
systems was introduced [17–19]. It was shown that the diversity of dynamical
phenomena observed in nonlinear media can be modeled by means of a spatial
array of only locally coupled and rather simple dynamical units (cells). The
interconnection of these units was called a Cellular Neural Network (CNN) that can
either be simulated on a digital computer or can be realized as an array of locally
coupled integrated electrical circuits. The original motivation to invent the CNN
was to build a more realistic and practical neural network compared to the general
theoretical architecture proposed just few years before by Hopfield [20, 21]. In a
Hopfield network the number of interconnections between neurons is growing
exponentially with the network size. The predefined global connectivity, however,
forbids large-scale implementation. In contrast to Hopfield networks, CNN provide
a more realistic approach to construct large-scale neural networks due to their
locality. Unlike in the brain, where a massive array of globally interconnected
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excitable units (neurons) capture their energy from the oxidation of biochemical
substrates, a CNN exhibits an active medium of only locally interconnected active
elements (e.g., transistors) that are powered by external electrical energy suppliers.
Each cell in a CNN is coupled only to its neighbors and represents a dynamical
system evolving according to some dynamical law. In general, neither the cell’s
dynamics nor the local interaction template between cells are required to be
spatially invariant. However, for the sake of simplicity, it is convenient to consider
a translation-invariant architecture of CNN, which depicts spatially homogeneous
nonlinear media. In this special case all cells evolve according to the same
dynamical law and the resulting CNN dynamics is uniquely predefined by a set
of real numbers, called a connection template or CNN gene that describes spatially
invariant interconnection weights between each cell and its neighboring cells.
These few numbers define a local connectivity rule, which governs the global
asymptotic dynamics of the network. The CNN represents an array of analog
processors or, in other words, continuous dynamical systems. In such systems
information processing is regarded as a dynamical evolution of the initial states,
which encode the input information, to some desired final states that are regarded
as the result of computation. A CNN gene plays the role of a programming
instruction, which is applied to a continuous information flow where the intrinsic
dynamics of a network uniquely maps an input pattern to some desired output
pattern.

Nowadays, the CNN architecture has found a broad range of applications in
such fields as, e.g., image processing and pattern recognition (see [8, 22] for an
overview). Nevertheless, the ultimate theory of the CNN gene design is still far from
being completed. In addition, a straightforward or ‘brute force’ optimization of an
arbitrary CNN dynamics to some desired spatial-temporal behavior, by means of
various existing optimization strategies, cannot always be successfully performed
within a reasonable amount of time. Thus, by analogy with digital computers
(where algorithms are usually implemented in some form of a flow-chart of
relatively simple instructions) it was quite natural to assume that the modeling of
a complex spatial-temporal dynamics can in principle also be decomposed into a
series of more simple intermediate steps. By definition, a sequence of CNN genes
defines a CNN chromosome or a ‘program’ with each gene within this sequence
representing an elementary instruction. A universe of all CNN genes is called a
CNN genome that defines some sort of ‘programming language’ that allows one to
program the spatial-temporal dynamics of CNN [8]. Having such a programming
language, we can try to reduce a complex spatial-temporal dynamics to some CNN
program or a CNN chromosome.

In 1993 a further development of the CNN paradigm, the so-called CNN
Universal Machine (CNN-UM) was introduced [23]. In contrast to the conventional
von Neumann computer architecture, the original CNN architecture lacks the
ultimate property of stored programmability, which is a crucial feature of universal
computation. Following the von Neumann definition of stored programmability, it
was assumed that any universal computational device (based on a CNN architecture)
must also possess additional local memory units, which may be used for both the
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storage and the successive retrieval of analyzed spatially-distributed information
along with a set of applied instructions. A program or chromosome can thus
be executed on the CNN, and the results obtained can then again be stored in
memory units for further processing. In the last decade, a variety of successful
applications of the CNN-UM paradigm eventually led to the development of a
number of ‘analogic’ visual processors (see [22] and references therein). These
platforms represent fully programmable arrays of analog processors along with
local analog memory units that are used for the storage of analog information (such
as connection templates, initial state distribution, etc.). A digital circuitry is used to
control the global and local information flow and establishes, by means of analog-
to-digital and digital-to-analog converters, an input-output process with an outside
digital world. Alternative CNN-UM implementations also include purely digital
approaches based on numerical integration of a cell’s equation of motion by means
of an array of digital signal processors, special-purpose processors, and different
software packages (for a review see [22, 24]). Capturing computational universality
of cellular automata ([25], for a review see [26]) and many important properties of
recurrent neural networks (such as synaptic plasticity, massive parallelism, etc.),
the CNN can be regarded as the next evolutionary step of the analog computer
architecture. In contrast to conventional analog computers that may be used to
simulate dynamics of some ordinary differential equations, the CNN may be used
for the simulation of spatial-temporal phenomena in partial differential equations
(PDE) which describe some nonlinear homogeneous medium. Thus, the CNN
concept can, in principle, provide a unified framework for the study of the observed
plethora of pattern formation and wave propagation phenomena in locally active
nonlinear media.

The next two sections provide an introduction into the field of time series analysis
with CNN. We present two complementary CNN-based methods for time series
analysis. The first, analytical, method is based on the phenomenon of a frequency-
selective induction of excitation waves in excitable media, simulated with CNN.
The second, adaptive, method exploits the computational universality of CNN.

10.3
An Analytical CNN-based Method for Pattern Detection in Non-stationary and Noisy
Time Series

Excitable media (EM) are spatially distributed excitable dynamical systems, which
are capable of rapidly propagating impulses (excitations) over long distances
without damping2). According to the theory of dynamical systems, excitable systems
are structurally unstable and thus reside (in parameter space) near a bifurcation
point [27]. Due to the intrinsic nonlinearity of such systems, even a tiny external
perturbation may lead to a qualitative change in their dynamical behavior. However,

2) In contrast, in linear dispersive media any
spatially localized moving wave-like object will

rapidly lose its shape due to intrinsic linear
dispersion.
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in many cases an external perturbation has to exceed a certain excitation threshold
to induce a transition from a steady (non-excitable) to an excitable state of the
system. Generally, the shape of the generated excitation does not depend on
the perturbation strength. Excitable systems are widespread in nature and more
recently they have also found a variety of technical applications [28].

Traveling waves in excitable media have been observed in many contexts. It is
now widely accepted that this phenomenon plays a vital role in the information
processing in many biological systems. For example, neural tissue possesses the
remarkable ability to generate and then to propagate electrical impulses (action
potential) quite rapidly over long distances. The energy, which is consumed
during the propagation of an action potential does not itself propagate along the
direction of the action potential, but instead is locally supplied by some intracellular
mechanism. Generally speaking, any excitable medium has to be locally active, i.e.,
has to possess local energy sources. As a direct consequence, the energy that is
consumed during wave propagation must be regenerated before the next wave front
can pass through the medium. This results in a refractory behavior, which indeed
can be observed in excitable media such as neural tissue [29–31]. The refractory
period (i.e., the time during which a medium is not capable of wave-propagation)
defines an upper limit of the frequency of an induced wave train. In contrast to
waves produced in linear passive media, which can easily propagate through each
other, the collision of two waves generated in locally active excitable media will lead
to their mutual annihilation. Traveling regenerative waves are also observed in a
family of oscillating chemical reactions that are known as Belousov–Zhabotinskii
reactions. Other examples include such diverse phenomena as propagation of
forest fires, or currents of sodium and potassium ions in the cardiac muscle [29].
Despite the different nature of the presented examples, the propagation of traveling
excitation waves in all EM has many common characteristics. The above discussed
features are thus common to all EM systems.

EM are often considered as a collection of locally coupled individual elements.
Neighboring elements of an EM interact with each other by a diffusion-like
transport process. In many cases, diffusion leads to a spatially homogeneous
steady state of the medium. However, recent studies have shown that the notion
of excitability might be further extended to the case of a spatially extended
excitable system whose unperturbed steady state resembles spatio-temporal chaos
[32, 33]. In contrast to EM with a spatially homogeneous steady state, these
systems show chaotic behavior that tends to actively destroy long-range spatial and
temporal correlations. This prevents the propagation of a single supra-threshold
excitation induced by a short-lasting local perturbation. In order to facilitate a wave
propagation phenomenon one therefore has to repeatedly perturb the medium
with perturbations of appropriate amplitudes and certain (resonance) frequencies.
Only in this case will the medium actively support the propagation of localized
excitation waves (cf. Figure 10.1). Thus, the observed phenomenon of frequency-
selective propagation of excitation waves in EM provides a possible way to extend
the conventional (i.e., amplitude-selective) notion of excitability in dynamical
systems [34, 35].
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Fig. 10.1 Examples for the induction of
spatial-temporal patterns in an excitable
medium (20 FitzHugh–Nagumo oscillators)
due to a perturbation of the first oscilla-
tor. The range of amplitude values of this
medium is encoded with colors ranging
from blue (minimum amplitudes) to red
(maximum amplitudes). (b) A noisy signal

containing a profound rhythmic compo-
nent leads to coherent periodic patterns. (a)
Only few excitation waves are induced if the
medium is perturbed with a non-periodic
or, in general, a non-correlated signal (here
white noise). (Please find a color version of
this figure on the color plates.)

The rapid and robust recognition of transient and broadband patterns in a tem-
porally varying and noisy acoustic environment is one of the major tasks performed
by the auditory system of mammals. Sensory neurons within the auditory pathway
exhibit frequency-selective firing of action potentials with respect to the spectral
content of perceived acoustic stimuli. Already in 1863 Helmholtz had pointed out
that our hearing organ – the mammalian cochlea – performs some sort of a spatially
distributed Fourier transform of acoustic stimuli [36]. In his model, he assumed that
the cochlea comprises a spatial array of resonators showing maximum excitations
only for given stimulus frequencies. It is now widely accepted that the mammalian
cochlea operates as an active sensor, amplifying some frequencies, and suppressing
others. Formally, this biological system provides an important example of a non-
linear excitable medium that actively supports the frequency-selective propagation
of excitation waves in response to local perturbations. Probably the most tractable
mathematical model of a nonlinear excitable medium showing qualitative proper-
ties of excitable neural tissue is the FitzHugh–Nagumo (FHN) reaction – diffusion
PDE [37, 38]. The discretized version of this equation – comprising a chain of
diffusively coupled FHN oscillators (neurons) – provides a generic mathematical
model for excitable media. Recent numerical studies show that this type of sim-
ulated excitable media exhibits the phenomenon of frequency-selective induction
of excitation waves with respect to the frequency of a locally applied periodic
perturbation [34, 35]. Thus the medium acts as a narrow-band frequency filter. By
perturbing several such excitable media, each tuned to a different characteristic
frequency, a broad frequency band of the applied perturbation can be scanned
for the presence of a rhythmic component. The resulting system resembles the
functioning of the mammalian cochlea, and thus represents some sort of a filter
bank instantaneously converting analog waveforms into excitation patterns [39].
Such systems provide a novel tool for the spectral analysis of non-stationary and
noisy signals. This provides the possibility to efficiently detect complex (broadband)
spectral patterns (e.g., stereotyped waveforms observed during epileptic seizures)
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Fig. 10.2 (a) Spatial-temporal pattern
induced in an excitable medium (20
FitzHugh–Nagumo oscillators due a per-
turbation of the first oscillator with an EEG
signal (b). The range of amplitude values of
this medium is encoded with colors rang-
ing from blue (minimum amplitudes) to red
(maximum amplitudes). The EEG signal was

recorded intracranially from a patient suf-
fering from medial temporal lobe epilepsy.
Data were sampled at 200 Hz within the
frequency band of 0.5–85 Hz using a 16
bit analog-to-digital converter. (Please find
a color version of this figure on the color
plates.)

in non-stationary signals (cf. Figure 10.2). Conventional approaches to time series
analysis require stationarity or at least approximate stationarity of time series and
have frequently been designed for a retrospective evaluation and usually performed
in a moving-window fashion (i.e., the time series is decomposed into a sequence
of overlapping or non-overlapping segments). This segmentation should represent
a reasonable trade-off between approximate stationarity of the time series and a
sufficient number of data points that is needed to obtain statistically significant
results for the calculation of some measure. The price we pay for this is the need
to presume stationarity over some time interval that defines a temporal resolution
of the applied methods. The method of frequency-selective excitation waves allows
almost instantaneous detection of short-lasting transient patterns in non-stationary
signals (with a high noise level) and can be regarded as a good complement to
already existing techniques based on statistical data evaluation.

After spectral decomposition the cochlea transforms incoming acoustic stimuli
into neural excitation patterns, which are projected via a variety of tonotopically
ordered parallel nerve fibers (i.e., each nerve fiber responds optimally to a particular
frequency) into a collection of specialized nuclei in the brain stem, where the process
of spatial localization of sound sources is taking place. Early anatomical studies
revealed that these nuclei are the first sites in the ascending auditory pathway
receiving massive converging binaural inputs from both ears [40]. One of the
acoustical cues about spatial localization of sound sources along the azimuth is
given by interaural time differences (ITD), i.e., differences in the times of arrival of
stimuli at both ears. It is now known that some neurons in the brain stem are highly
sensitive even to microsecond ITD. Our abilities to localize sound sources along
the azimuth axis thus partly stems from the capability of these neurons to precisely
discriminate phase-relationships in acoustic stimuli between both ears. Following
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this idea our recent numerical studies [41] have shown that a combination of
two EM with a coincidence detector (that is realized as a nonlinear oscillator,
e.g., an integrator neuron) provides a possible approach to detect synchronization
phenomena even in cases where it is difficult to directly apply phase-based measures
of synchronization due to a relatively low signal-to-noise ratio (cf, Figure 10.3).
Such an analog approach to time series analysis – in which correlated changes in
the dynamics of the system under investigation are characterized by their influence
on the global dynamics of a perturbed system – is conceptually different from a
variety of statistical approaches currently in use. In this context, recent studies have
shown that a simple leaky integrate and fire model of neurons allows the on-line
identification of epileptic seizure onsets and the detection of pre-seizure changes
in EEG recordings [42, 43].

10.4
An Adaptive CNN-based Method to Measure Synchronization

Research over recent years has shown that the analysis of synchronization phe-
nomena in the epileptic brain can contribute significantly to the field of seizure
prediction (see [44] for an overview). As opposed to previously used – mostly
linear and nonlinear – univariate time series analysis approaches, different mea-
sures for synchronization offer a significant predictive performance above chance
level [16,45–48]. Despite these promising features there are also disadvantages that
render an application of synchronization measures in a clinical setting problem-
atic. In current clinical or neuroscientific investigations the number of sensoring
electrodes typically ranges between 100 and 200, and algorithms’ runtime grows
quadratically with the number of channels. This leads to strong restrictions when
using currently available personal computers, particularly for real-time applica-
tions. CNN can be regarded as an alternative computational tool for measuring
synchronization due to their attractive information-processing characteristics al-
ready discussed above. However, in contrast to the analytical CNN-based method
presented in the previous chapter, no CNN templates are currently available that
would allow one to estimate the various types of synchronization in an analytical
way. In this section we present an adaptive CNN-based method for the estimation of
phase and generalized synchronization in EEG time series via supervised learning.

Synchronization phenomena can be observed in nearly all fields of science [4,48].
Despite the very intuitive use of the term synchronization in everyday life situations,
several obstacles in finding a universal definition of the term occur since various
types of synchronization can be observed. In the literature, synchronization was
mentioned for the first time at the end of the 17th century by Christiaan Huygens.
He noticed that two pendulum clocks, suspended from a bar, can adapt their
rhythms, and their phase difference vanishes, which obviously depicts some kind
of phase synchronization. Mathematically, Huygens defined this phenomenon as a
locking of phases φ [49]:

φa
j − φb

j = const. (10.1)
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Fig. 10.3 Means and standard deviations
(10 realizations) of the mean phase co-
herence R [15] and the coincidence rate
C measured between the x-components
of two coupled noise-free (b) and noisy
((a) SNR = −6 dB) Rössler systems for
increasing coupling strengths. Coincidence

rate C is defined as the number
of coincidences between the last
oscillators of the excitable media
(approximated as a diffusively coupled chain
of the FitzHugh–Nagumo oscillators). The
first oscillators were perturbed by the two
time series.



140 10 Time Series Analysis with Cellular Neural Networks

Almost 300 years later, it was observed that nonlinear and particularly chaotic
dynamical systems show synchronization behavior similar to periodic oscillators.
Since then it turned out that the classical definition of phase synchronization is
not sufficient in certain cases, and it became clear that extended definitions are
required. A straightforward approach was the definition of a phase for non-periodic
oscillators using the Hilbert or the wavelet transform. These more generally defined
phases can be exploited to construct measures that determine the degree of phase
synchronization between dynamical systems. A widely used concept is the mean
phase coherence R [15], based on a circular statistics of the phases:

R =
∣∣∣∣∣∣

1

K

K∑
j=1

e
i
[
φa

j −φb
j

]∣∣∣∣∣∣ , (10.2)

where K denotes the number of data points in the time series.
A more general definition for synchronization is based on state space properties

of the observed systems. The concept of generalized synchronization [50] claims
the existence of some functional relationship between the states of the systems.
Properties of this functional (e.g., smoothness, differentiability, etc.) can then be
exploited for a characterization of the systems’ synchronization state. Though
being conceptually very simple the application to real world systems is difficult
since the functional is a priori not known in most cases and, in general, cannot
be determined analytically. In order to avoid these shortcomings, Arnhold and
colleagues developed the concept of nonlinear interdependences, which is based
on the measurement of distances in state space [51]. Given some knowledge
about the systems, nonlinear interdependence measures can be regarded as
estimators for the strength and the direction of coupling, thus allowing one to
detect driver-responder-relationships.

Consider two dynamical systems V and W and their reconstructed state space
vectors �vn = (

vn, . . . , vn−(m−1)d
)

and �wn = (
wn, . . . , wn−(m−1)d

)
, where m denotes

the embedding dimension and d the time delay [52]. Let rn,j and sn,j, j = 1 · · · k
denote the time indices of the k nearest neighbors of �vn and �wn, respectively. The
W-conditioned mean squared Euclidean distance is defined as

Q
(k)
n (V |W) = 1

k

k∑
j=1

(
�vn − �vsn,j

)2
. (10.3)

Following [53] the nonlinear interdependence measure N is then defined as

N(k)(V |W) = 1

K

K∑
n=1

Qn(V) − Q
(k)
n (V |W)

Qn(V)
, (10.4)

where Qn(V) is the mean distance of one vector to all other state space vectors:

Qn(V) = 1
K − 1

∑
j �=n

(�vn − �vj
)2

. (10.5)
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Low values of N(k)(V |W) indicate the independence of systems V and W (also
slightly negative values are possible), while N(k)(V |W) → 1 for identical systems.
The fact that the opposite interdependence N(k)(W|V) is, in general, not equal
to N(k)(V |W) can be exploited to obtain information about driver – responder
relationships. Quantitatively this can be realized by a symmetric and an asymmetric
composition of N(k)

Ns = N(k)(V |W) + N(k)(W|V)

2
, Na = N(k)(V |W) − N(k)(W|V)

2
, (10.6)

where Ns can be regarded as a measure for the strength of synchronization and Na

identifies the more active and the more passive system [51]. For further details we
refer the reader to Chapter 5 in this book.

10.4.1
Learning Synchronization in EEG Time Series with CNN

Due to the lack of specific CNN templates for measuring synchronization in
time series, we considered the concept of supervised learning to find a CNN
structure that allowed us to approximate the different measures for phase and
generalized synchronization [13, 14]. In the following, let M denote a measure
for synchronization (mean phase coherence R or nonlinear interdependence N).
For an in-sample optimization of the network we compiled a training set that
consists of L elements where half of the chosen pairs of EEG segments exhibit
high synchronization values Mmax and the other half low synchronization values
Mmin. We set the desired outputs of each CNN cell to yref = +1 and yref = −1,
respectively, in order to exploit the whole range of values of the CNN. Optimization
of the network was performed by minimizing the cost function � for all elements
of the training set simultaneously:

� = 1

L

L∑
l=1

(
1

4K

K−1∑
k=0

[
yl,k(τtrans) − y

ref
l

]2
)

(10.7)

Although this optimization procedure is time consuming and computationally
demanding, we were able to identify CNN templates that allowed us to approximate
the different synchronization values in the training set with an acceptable accuracy.
In order to assess the performance of our CNN in an out-of-sample validation study
we used a linear rescaling of the approximated measure MCNN:

MCNN =
(

1

K

K−1∑
k=0

yk(τtrans) + 1

2

)
(Mmax − Mmin) + Mmin. (10.8)

In [13] we applied the adaptive CNN-based concept to approximate the mean
phase coherence R in long-term (more than five days), intracranial EEG recordings
from an epilepsy patient. Using approximately five minutes of EEG recording for
optimizing the CNN only, we achieved an average deviation of 5.5 % between
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analytically calculated R values and estimated RCNN values. Evaluating the temporal
evolution of RCNN we observed a long-lasting drop in synchronization (cf. [54]) prior
to seven of the ten seizures recorded in this patient. These findings indicate that
a differentiation between interictal and preictal states is in principle possible using
RCNN, although the achieved performance might not be sufficient for all cases. Nev-
ertheless, we note that our CNN allowed a sufficient approximation of R even during
and after the seizures, although we did not use data from these states for the training.

In [14] we recently applied the adaptive CNN-based concept to approximate both
the symmetric Ns and the asymmetric Na nonlinear interdependence measures in
the EEG recording already studied in [13]. Again, only approximately five minutes of
in-sample training data sufficed to reproduce – in an out-of-sample study – the long-
term fluctuations of Ns and Na in the long-term EEG recording with an acceptable
accuracy (cf. Figure 10.4). For the symmetric nonlinear interdependence measure
we assessed the suitability of our adaptive CNN-based concept for a possible
application in seizure prediction studies. Using receiver-operating characteristic
statistics (ROC) and assuming that for each of the ten seizures a preictal state with
a duration of 4 h exists (cf. [16]), we compared the frequency distributions of Ns and
of NCNN

s values from the preictal and interictal interval, excluding data from the
seizure states and from the 30 min following the seizures. For NCNN

s we achieved
a prediction performance of ROC = 0.74, which was lower than for the calculated
nonlinear interdependence Ns (ROC = 0.83). Given the observed higher variance
of the CNN-based estimates, this deviation was to be expected to some extent. The
achieved performance, however, can still be regarded as promising and indicates
that a differentiation of preictal states from the interictal interval is in principle
possible using our CNN-based approach.

We recently investigated within-subject and across-subject generalization prop-
erties of the adaptive CNN-based concept to measure symmetric nonlinear
interdependences. For the within-subject generalization study we used the CNN
settings derived in [14] and estimated – for the data of the same patient investigated
there – NCNN

s values for all (i.e., 210) channel combinations. A comparison with the
analytically derived Ns values revealed an average deviation of about 7 % (mean over
the measure profile lasting more than five days) for the channel combination that
was used for optimizing the CNN. For the remaining 209 channel combinations
the mean deviation (mean over all channel combinations and over the measure
profile) amounted to about 11 %. This degradation was to be expected (at least to
some extent), given the fact that the optimization was not performed for these
channel combinations separately. When investigating the detectability of preictal
states for each channel combination using ROC and seizure time surrogates [55]
we observed that the number of channel combinations for which the statistical tests
indicate a significant detection performance decreased (47 channel combinations
using Ns vs 25 channel combinations using NCNN

s ). We note that the remaining 25
channel combinations captured EEG activity from the seizure onset zone and from
homologous contralateral structures.

We observed similar effects when investigating across-subject generalization
properties of our approach. Here we used CNN settings optimized for a single
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Fig. 10.4 From top to bottom. (a) Time
courses of the calculated symmetric and
asymmetric nonlinear interdependence
measures Ns and Na and their estimated
counterparts (NCNN

s and NCNN
a ) using our

CNN-based approach for a long-term in-
tracranial EEG recording from a patient

suffering from a medial temporal lobe
epilepsy. (b) Zoom on the period prior to,
during, and after the first seizure. All profiles
are smoothed using a five-minute moving-
average filter for better visualization. Gray
vertical lines mark seizure onsets.
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Patient 1 Patient 2 Patient 3
TL01

TL10

TR10

TR01NS

NS
CNN

1

0.5

Epileptic
focus

Fig. 10.5 Across-subject generalization prop-
erties of the adaptive CNN-based concept
of measuring the strength of generalized
synchronization. Color-coded ROC-areas
obtained from numerically derived (upper
row) and approximated (lower row) profiles
of the symmetric nonlinear interdependence
Ns for all electrode combinations. Black
dots indicate a significant ROC-area value
(using 19 seizure time surrogates) for a

given electrode combination. Data from a
single channel combination from patient
#1 was used for optimizing the CNN. This
optimized CNN was used to estimate NCNN

s
values for the remaining channel combina-
tions in this patient, and for the data from
patient #2 and #3. Arrows indicate seizure
onset area. (Please find a color version of
this figure on the color plates.)

channel combination from one patient (patient #1), estimated NCNN
s values for

long-lasting (on average 8.8 days) multi-channel EEG data recorded via 20 intrahip-
pocampal depth electrodes from another four patients, and proceeded as described
above. Here we observed that the number of channel combinations for which the
statistical tests indicated a significant performance in detecting a preictal state even
increased in three patients. In two patients the, thus defined, channel combinations
were confined to the seizure onset zone (cf. Figure 10.5). Although it is too early
to draw final conclusions about the generalization properties of our approach, our
preliminary findings indicate that the adaptive CNN-based concept of measuring
synchronization appears to be capable of focusing on spatial and temporal infor-
mation in the EEG that might be of relevance for a further improvement of seizure
prediction algorithms.

10.5
Conclusions and Outlook

We have presented approaches for the analysis of interacting complex systems with
the nonlinear dynamics of interacting nonlinear elements. We here considered two
complementary approaches, an analytical and an adaptive one, that are based on
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the concept of Cellular Neural Networks (CNN). The analytical approach exploits
the phenomenon of frequency-selective induction of excitation waves in excitable
media. We showed that this can be a novel tool for the spectral analysis of non-
stationary and noisy time-series. By combining two excitable media and feeding
their output to a coincidence detector, we implemented a system that allows one
to detect synchronization phenomena even in cases where it is difficult to directly
apply phase-based measures for synchronization due to a relatively low signal-
to-noise ratio. The adaptive approaches exploit the computational universality of
CNN. We showed that a CNN can be trained (via supervised learning) to learn
synchronization phenomena in complex time series such as phase and generalized
synchronization.

In contrast to other artificial neural networks, CNN are characterized by a local
coupling of processing units. This unique feature enables large-scale hardware
implementations, e.g., as very large scale integrated (VLSI) circuits, and may lead
to the development of miniaturized analysis systems. We thus expect that our ap-
proaches can complement the various existing methods used for the prediction of
epileptic seizures, e.g., by providing a means for real-time analyses of long-lasting,
multichannel EEG data. Together with currently available seizure-prevention tech-
niques this may eventually lead to the development of a miniaturized – and possibly
implantable-seizure prediction and prevention device.

References

1 D. Brillinger. Time Series: Data
Analysis and Theory. Holden-Day,
San Francisco (1981).

2 M. B. Priestley. Nonlinear and
Non-Stationary Time Series
Analysis. Academic Press, London
(1988).

3 J. S. Bendat and A. G. Piersol.
Random Data Analysis and
Measurement Procedure. Wiley, New
York (2000).

4 A. S. Pikovsky, M. G. Rosenblum
and J. Kurths. Synchronization – A
universal concept in nonlinear
sciences. Cambridge University
Press, Cambridge, UK (2001).

5 H. Kantz and Th. Schreiber.
Nonlinear Time Series
Analysis. Cambridge Univ. Press,
Cambridge, UK, second edition
(2003).

6 G. V. Osipov, J. Kurths and C. Zhou.
Synchronization In Oscillatory

Networks. Springer, Berlin, New York
(2007).

7 T. L. H. Watkin, A. Rau and
M. Biehl. The statistical mechanics
of learning a rule. Rev. Mod.
Phys., 65, 499–556 (1993).

8 L.O. Chua. CNN: A paradigm for
complexity. Singapore: World
Scientific (1998).

9 R. Tetzlaff, R. Kunz, C. Ames and
D. Wolf. Analysis of brain electrical
activity in epilepsy with Cellu-
lar Neural Networks (CNN). In
C. Beccari, M. Biey, P.P. Civalleri
and M. Gilli, editors, Proc. IEEE
European Conference on Circuit
Theory and Design, pages 1007–10,
Turin, Italy (1999). Levrotto & Bella.

10 A. Potapov and M. K. Ali. Neural
networks for estimating intrinsic
dimension. Phys. Rev. E, 65, 046212
(2002).

11 R. Kunz and R. Tetzlaff.
Spatio-temporal dynamics of



146 10 Time Series Analysis with Cellular Neural Networks

brain electrical activity in epilepsy:
analysis with cellular neural net-
works CNNs. J. Circuit Syst.
Comp., 12, 825–44 (2003).

12 R. Tetzlaff, T. Niederhofer and
P. Fischer. Automated detection
of a preseizure state: Non-linear
EEG analysis in epilepsy by
Cellular Nonlinear Networks and
Volterra systems. Int. J. Circ.
Theor. Appl., 34, 89–108 (2006).

13 R. Sowa, A. Chernihovskyi,
F. Mormann and K. Lehnertz.
Estimating phase synchronization
in dynamical systems using
cellular nonlinear networks.
Phys. Rev. E, 71, 061926 (2005).

14 D. Krug, H. Osterhage, C. E.
Elger and K. Lehnertz. Estimating
nonlinear interdependences
in dynamical systems using
cellular nonlinear networks.
Phys. Rev. E, 76, 041916 (2007).

15 F. Mormann, K. Lehnertz, P. David
and C. E. Elger. Mean phase
coherence as a measure for phase
synchronization and its application
to the EEG of epilepsy patients.
Physica D, 144, 358–69 (2000).

16 F. Mormann, T. Kreuz, C. Rieke,
R. G. Andrzejak, A. Kraskov,
P. David, C. E. Elger and
K. Lehnertz. On the predictability of
epileptic seizures. Clin. Neurophysiol.,
116, 569–87 (2005).

17 L. O. Chua and L. Yang. Cellular
neural networks: theory. IEEE Trans.
Circ. Syst., 35, 1257–72 (1988).

18 L. O. Chua and L. Yang. Cellular
neural networks: applications. IEEE
Trans. Circ. Syst., 35, 1273–90 (1988).

19 L. O. Chua, M. Hasler, S. Moschytz
and J. Neirynck. Autonomous
cellular neural networks: A unified
paradigm for pattern formation
and active wave propagation. IEEE
Trans. Circ. Syst., 42, 559–77 (1995).

20 J. J. Hopfield. Neural networks and
physical systems with emergent
computational abilities. Proc. Natl.
Acad. Sci. USA, 79, 2554–8 (1982).

21 J. J. Hopfield. Neurons with graded
response have computational

properties like those of two-state neu-
rons. Proc. Natl. Acad. Sci. USA, 81,
3088–92 (1984).

22 L. O. Chua and T. Roska.
Cellular Neural Networks and
Visual Computing. Cambridge UK:
Cambridge University Press (2002).

23 T. Roska and L. O. Chua. The CNN
universal machine: An analogic
array computer. IEEE Trans. Circ.
Syst. II: Analog and Digital Signal
Processing, 40, 163–73 (1993).

24 T. Roska and A. Rodriguez-Vazquez.
Towards the Visual Microprocessor:
VLSI Design and the use of Cellular
Neural Network Universal Machines.
Chichester: J. Wiley (2000).

25 S. Ulam. Random processes and
transformations. Proc. Int. Congress
Mathem., 2, 264–75 (1952).

26 S. Wolfram. Statistical mechanics of
cellular automata. Rev. Mod. Phys.,
55, 601–44 (1983).

27 E. M. Izhikevich. Dynamical
Systems in Neuroscience: The
Geometry of Excitability and Bursting.
The MIT Press, Cambridge,
Massachusetts, London, England
(2007).

28 A. Adamatzky. Computing in
Nonlinear Media and Automata
Collectives. IoP Publishing, Bristol
(2001).

29 J. D. Murray. Mathematical Biology.
New York: Springer (1989).

30 E. Meron. Pattern formation
in excitable media. Phys. Rep., 218,
1–66 (1992).

31 M. C. Cross and P. C. Hohenberg.
Pattern formation outside from
equilibrium. Rev. Mod. Phys., 65,
854–1112 (1993).

32 G. Baier, R. S. Leder and
P. Parmananda. Human
electroencephalogram induces
transient coherence in excitable
spatiotemporal chaos. Phys.
Rev. Lett., 84, 4501–4 (2000).

33 G. Baier and M. Müller. Nonlinear
dynamic conversion of analog
signals into excitation patterns.
Phys. Rev. E., 70, 037201 (2004).

34 G. Baier and M. Müller. Frequency-
selective induction of excitation



References 147

waves near sub- and super-
critical Hopf bifurcation. Phys.
Lett. A., 330, 350–7 (2004).

35 A. Chernihovskyi, F. Mormann,
M. Müller, C.E. Elger, G. Baier and
K. Lehnertz. EEG analysis with
nonlinear excitable media. J. Clin.
Neurophysiol., 22, 314–29 (2005).

36 H. L. F. Helmholtz. On the Sen-
sations of Tone as a Physiological
Basis for the Theory of Music. New
York: Dover Publications (1954).

37 R. FitzHugh. Impulses and
physiological states in theoreti-
cal models of nerve membrane.
Biophys. J., 1, 445–66 (1961).

38 J. S. Nagumo, S. Arimoto and
S. Yoshizawa. An active pulse trans-
mission line simulating nerve axon.
Proc. IRE, 50, 2061–70 (1962).

39 A. Chernihovskyi, C. E. Elger and
K. Lehnertz. Effect of inhibitory
diffusive coupling on frequency-
selectivity of excitable media simu-
lated with cellular neural networks.
In V. Tavsanoglu and S. Arik,
editors, Proc. of the 2006 10th IEEE
International Workshop on Cellular
Neural Networks and their Applications,
pp 292–6. IEEE-Press (2006). Catalog
No: 06TH8915, ISBN 1-4244-0639-0.

40 E. R. Kandel, J. H. Schwartz and
T. M. Jessell. Principles of Neural Sci-
ence. McGraw-Hill Publishing Co.
(2000).

41 A. Chernihovskyi and K. Lehnertz.
Measuring synchronization with
nonlinear excitable media. Int.
J. Bifurcation Chaos, 17, 3425–9
(2007).

42 K. Schindler, R. Wiest, M. Kollar
and F. Donati. Using simulated
neuronal cell models for detection
of epileptic seizures in foramen
ovale and scalp EEG. Clin. Neu-
rophysiol., 112, 1006–17 (2001).

43 K. Schindler, R. Wiest, M. Kollar and
F. Donati. EEG analysis with sim-
ulated neuronal cell models helps
to detect pre-seizure changes. Clin.
Neurophysiol., 113, 604–14 (2002).

44 F. Mormann, R. G. Andrzejak, C. E.
Elger and K. Lehnertz. Seizure

prediction: the long and winding
road. Brain, 130, 314–33 (2007).

45 M. Le Van Quyen, J. Soss,
V. Navarro, R. Robertson, M. Chavez,
M. Baulac and J. Martinerie. Pre-
ictal state identification by syn-
chronization changes in long-term
intracranial EEG recordings. Clin.
Neurophysiol., 116, 559–68 (2005).

46 B. Schelter, M. Winterhalder,
T. Maiwald, A. Brandt, A. Schad,
A. Schulze-Bonhage and J. Timmer.
Testing statistical significance of
multivariate time series analysis
techniques for epileptic seizure
prediction. Chaos, 16, 013108 (2006).

47 H. Osterhage, F. Mormann,
M. Staniek and K. Lehnertz.
Measuring synchronization in
the epileptic brain: a compari-
son of different approaches. Int.
J. Bifurcation Chaos, 17, 3425–9
(2007).

48 S. Boccaletti, J. Kurths, G. Osipov,
D. L. Valladare and C. S. Zhou.
The synchronization of chaotic
systems. Phys. Rep., 366, 1–101
(2002).

49 C. (Hugenii) Huygens. Horologium
Oscillatorium. Apud F. Muguet,
Parisiis (1673).

50 V. S. Afraimovich, N. N. Verichev
and M. I. Ravinovich. General
synchronization. Izv. VUZ. Ra-
diophiz., 29, 795–803 (1986).

51 J. Arnhold, P. Grassberger,
K. Lehnertz and C. E. Elger. A
robust method for detecting in-
terdependences: application to
intracranially recorded EEG.
Physica D, 134, 419–30 (1999).

52 F. Takens. Detecting strange at-
tractors in turbulence. In D. A.
Rand and L. S. Young, editors,
Dynamical Systems and Turbu-
lence, volume 898 of Lecture
Notes in Mathematics, pp 366–81.
Springer-Verlag, Berlin (1980).

53 R. Quian Quiroga, A. Kraskov
T. Kreuz and P. Grassberger. Per-
formance of different synchroniza-
tion measures in real data: A case
study on electroencephalographic



148 10 Time Series Analysis with Cellular Neural Networks

signals. Phys. Rev. E, 65, 041903
(2002).

54 F. Mormann, R. Andrzejak, T. Kreuz,
C. Rieke, P. David, C. Elger and
K. Lehnertz. Automated detec-
tion of a preseizure state based on
a decrease in synchronization in
intracranial electroencephalogram

recordings from epilepsy patients.
Phys. Rev. E, 67, 021912 (2003).

55 R. G. Andrzejak, F. Mormann,
T. Kreuz, C. Rieke, A. Kraskov,
C. E. Elger and K. Lehnertz. Testing
the null hypothesis of the nonex-
istence of a preseizure state. Phys.
Rev. E, 67, 010901(R) (2003).



149

11
Intrinsic Cortical Mechanisms which Oppose Epileptiform
Activity: Implications for Seizure Prediction

Andrew J. Trevelyan

11.1
Introduction

Epilepsy is amongst the most common serious neurological conditions. Yet any
consideration of what we know about cortical anatomy or function begs the question
‘why is epilepsy not more common still?’ Rhythmic synchronized firing appears
to be a fundamental feature of cortical function: there are multiple recognized
synchronizing mechanisms (for instance, intrinsic bursting of principal neurons,
sensory inputs, glutamate release from glia, amongst others), and many reports of
synchronized activity patterns dating back to the first EEG recordings by Berger in
1929. Furthermore, when one examines the firing patterns of individual neurons in
various in vivo and in vitro preparations, one notable and common pattern of activity
is for the neuron to enter a sustained depolarized state for hundreds of milliseconds,
and fire repeatedly (this pattern of activity is often referred to as an ‘UP state’). While
the function of these various physiological states remains unclear, if one considers
these activity patterns in the context of the known recurrent pattern of connectivity
of cortical networks (reciprocal connections not only between individual neurons
but also local populations and also cortical areas), then the likelihood of the network
becoming locked into a cycle of rhythmic, re-entry excitation appears great.

Why then, are we not seizing continuously? One proposal suggested 40 years
ago by Prince and Wilder [1], is that the spread of epileptiform activity is prevented
by a surround inhibition. The inhibitory surround theory, if correct, deserves a
great deal of attention, since it immediately suggests a likely cause of epilepsy
arising from deficits in this protective mechanism. The mechanism might also
be a target for pharmacotherapy, seeking to bolster the inhibitory mechanism
in patients who suffer focal seizures. Yet in spite of the obvious importance of
this mechanism, we are little nearer understanding the network basis for the
inhibitory surround than when Prince first suggested his hypothesis 40 years ago.
A significant factor slowing our progress has been the difficulty of studying this
phenomenon in vivo. Recently, however, we have been able to demonstrate a
means of examining the inhibitory surround mechanism in an in vitro preparation,
with all the benefits that ensue from such studies (enhanced control over the
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experimental regime, improved access both for imaging and for electrophysiological
recordings, etc.).

In this chapter, I will review the evidence for such a mechanism from in vivo
experimental work, and follow this with a brief discussion of the relative merits of in
vitro and in vivo studies and the interpretation of these different data sets. I will then
describe my own studies, which stemmed initially from a theoretical consideration,
but which then led to my developing a means of examining this important protective
cortical mechanism in vitro. Finally, I will discuss what implications the inhibitory
surround hypothesis has for seizure prediction.

11.2
The Inhibitory Surround in Cortex: In Vivo Studies

The concept of the inhibitory surround dates back to the first intracellular recordings
made in cortical tissue by Powell and Mountcastle [2] who showed that when a
focal stimulation is applied to the cortex, the surrounding territories have their
activity suppressed (as an aside, Tom Powell, the first author of that study, taught
this author neuroanatomy in his first year at Oxford in 1985, thus providing a
personal link over this 50 year research project!). Prince and Wilder [1] showed that
the same suppression of surround cortex also occurs with epileptic activity. They
induced epileptiform activity with a focal application of penicillin, and recorded
interictal events using field electrodes. At the same time, they also recorded single
neurons and divided these into two groups according to the pattern of synaptic
barrage during these events. In one group, the cells experienced strong paroxysmal
depolarizing events synchronous with the interictal event. These cells were mostly
located close to the ictal focus. The second group, which formed the predominant
cell type in the surrounding territory, received inhibitory barrages during the
events, and had their firing suppressed. Dichter and Spencer [3] then showed
an almost identical phenomenon in hippocampus, inducing their foci with local
strychnine injections. More recently, similar differences between the focus and
the surrounding territories have been demonstrated using using intrinsic optical
imaging [4] and voltage-sensitive dyes [5].

Further evidence for the inhibitory surround mechanism comes from immuno-
histochemical studies subsequent to focal tetanus injections in rats. In contrast
to the models discussed in the previous paragraph, focal tetanus toxin injection
generally (although not always) triggers seizures only after a latent period of
several days [6]. The seizures in those first few days after the initial event are
the most intense and tend to generalize, but subsequently, seizure activity ap-
pears reduced and much more localized [6]. This temporal evolution is reflected
in the expression patterns of a number of proteins. At the stage when seizures
are most severe, BDNF is upregulated throughout the cortex, but after activity
settles to a more focal pattern, BDNF upregulation is also restricted to the area
surrounding the initial tetanus injection [7]. At this late stage, at the injection
site, there is upregulation of the the immediate early genes, zif268 and c-fos,
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as well as GAD67 (GABA synthesis enzyme whose expression is known to be
modulated by activity) and NR1 (NMDA receptor subunit 1), and down regu-
lation of CaMKII (a pyramidal specific marker) and reduction also in GluR2
mRNA (expressed in both pyramids and interneurons) [8, 9]. In contrast, all
these markers showed the exact opposite expression pattern in the surround
area. Undoubtedly there will be changes in expression of other molecular species
too, and much more work is required before we can ascribe a precise cause
and effect to these changes relative to the changes in seizure pattern. Suffice
to say that, as far as our current state of knowledge allows us to speculate,
these annular expression patterns could be interpreted as providing a restraint
which, after the initial seizure activity, subsequently keeps the pathological activity
localized.

11.3
In Vitro Studies: Strengths and Weaknesses

In vitro preparations provide a greatly simplified network to study, and therein
lies both their strength and their weakness. One has almost complete control over
the extracellular solution, and can rapidly switch the bathing media to apply or
remove pharmacological agents. The control does not extend to the small localized,
transient fluxes in the extracellular environs, most obviously involving the release
of neurotransmitters and ionic species, in particular K+ when activity levels are
especially high. But then, such local fluxes are desirable since they represent the
network behavior that we want to understand. The important fact is that the
general environment can be maintained very stably because the large volume
of the bathing solution overwhelms any homeostatic capabilities of the reduced
preparation.

The second big advantage of in vitro preparations is the accessibility. One can
visualize the network, especially in submerged slices, and identify certain neuron
classes with relative ease using DIC (differential interference contrast) imaging, or
fluorescence microscopy if these neurons have been prelabeled with a fluorescent
marker such as GFP. One can thus target particular neurons to patch clamp, and
furthermore, patch on to multiple cells locally. In recent years, Henry Markram’s
group have pursued this to an extreme level, demonstrating an ability to patch clamp
up to 12 closely apposed neurons simultaneously. These kinds of experiments are
difficult, if not impossible, in vivo.

The prime drawback of in vitro experiments is that all long-range axonal tracts
are severed during the preparation. The most relevant of these tracts for epilepsy
research are the pathways to and from thalamic nuclei, those that connect the
two hemispheres through the corpus callosum and the commissural connections
between the two hippocampi, and the long range intrahemispheric connections.
This is a significant limitation, and to address it, various researchers have developed
a number of in vitro preparations that preserve particular long-range tracts. The
simple fact though, is that if one wants to have all long-range tracts intact, then
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Mouse: in vitro

Cat: in vivo

5s

50mV

50mV

(a)

(b)

Fig. 11.1 Comparable pattern of recruitment
of cells to ictal events as recorded in vitro
and in vivo. Typical pattern of rhythmic depo-
larizations without action potentials recorded
in pyramidal cells prior to their recruitment

to an ictal event. Note the extreme similarity
between the recording from a brain slice of a
juvenile mouse (a) and that from an adult
cat in vivo (b) recording provided by Igor
Timofeev.

one must work with the whole brain. The absence of these pathways in vitro
means that one will have a compromised view of the pattern of generalization of
ictal activity. It also means that we have to validate these models using whatever
means of comparison is available – generally utilizing activity patterns recorded
either intracellularly or extracellularly. And it is important to emphasize here
that when we do just this, many in vitro models, while obviously being ‘reduced
preparations,’ do appear to reflect particular aspects of in vivo activity really rather
well (Figure 11.1).

For instance, bathing brain slices in artificial cerebrospinal fluid (CSF) lacking
in Mg2+ ions provokes a wide range of epileptiform activity including transient
interictal events with a low level of neuronal participation [10, 11], slow and rapid
patterns of generalization [12–14], and full ictal events with a clear tonic-clonic
pattern apparently involving all neurons in the network [10,11]. This model has also
been used to explore pharmaco-resistant status epilepticus [15,21,22]. Furthermore,
the pattern of membrane potential (Em) fluctuations during the critical time period
when a neuron is being recruited to an ictal event is demonstrably the same in
focal neocortical seizures in vivo as it is in vitro (Figure 11.1), as is the pattern
of high-frequency activity in extracellular recordings. Finally, the wide range of
propagation speeds recorded in vivo is well matched by the thousand-fold range of
speeds seen in 0 Mg2+ in vitro [13]. Thus, in so far as there are in vivo recordings
to compare with, the activity seen in the in vitro 0 Mg2+ model appears well
matched to certain in vivo epileptic events. One implication is that what regulates
the recruitment of a neuron to an ictal event is preserved within the in vitro
preparation: the critical factors are likely the local synaptic network interactions
and the intrinsic cellular properties of the neurons. This then is where we benefit,
because our in vitro experiments have allowed us to go far beyond what has been
observed in vivo, and we can start to unveil the network basis of the inhibitory
surround mechanism.
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11.4
Inhibitory Surround in an In Vitro Preparation

We recorded epileptiform activity using two extremely powerful research tools:
fast Ca2+ imaging of network activity in tandem with patch clamp record-
ings. The usefulness of Ca2+ imaging comes from the fact that every time
neurons fire action potentials, they experience a sharp, transient rise in intra-
cellular Ca2+, primarily due to opening of voltage-dependent Ca2+ channels in
the cell membrane. Ca2+ dyes can indicate these fluxes because their fluores-
cent properties change with the local Ca2+ concentration. There are, of course,
technical and interpretative problems as there are with any experimental proto-
col, and I would encourage the interested reader to read up about these issues
in more specialist texts [23]. The fact remains though that Ca2+ dyes provide
an unprecedented view of neuronal networks in action, allowing hundreds of
neurons to be monitored simultaneously with single-cell resolution. Because of
the kinetics of the dyes (fast onset, slow decay), they most readily lend them-
selves to identifying when a neuron’s activity increases, which is of course
exactly what is desired when studying the recruitment of neurons to epileptiform
events.

Simultaneous with our Ca2+ imaging of the network, we made patch clamp
recordings of neurons.Initially we targeted for patching just one specific class,
the large layer-5 pyramidal cells. It was important to have a set of ‘refer-
ence’ recordings which would allow us to relate different experiments, and
these cells seemed a good choice for this purpose: they are readily identifi-
able under DIC optics, and generally easy to patch; their dendritic trees span
virtually the entire cortical axis from their apical tuft lying in layer 1 down to
their basal dendrites sampling layer 6, so they provide a good ‘microphone’
for listening to synaptic activity within the slice; and these cells had previously
been implicated in ictogenesis. To separate out inhibitory and excitatory drives
onto these cells, we held them roughly halfway between the reversal poten-
tials for glutamate (Eglut) and GABA (EGABA). Our reference recordings then,
were voltage clamp (Vclamp) recordings of these layer-5 pyramidal cells held at
−30 mV.

We were further helped in our analysis of ictal activity patterns by finding that
adjacent layer-5 pyramidal cells experienced almost identical synaptic barrages
at these times (Figure 11.2). This was a statistical effect stemming from the
sheer intensity of the local activity, because at other, more quiescent times, the
synaptic currents in the paired recordings were not particularly well correlated.
During ictal events though, this correlation of synaptic drive presented us with
an extremely useful research tool: one cell could be recorded in ‘reference mode,’
that is in Vclamp mode at −30 mV, and the other cell could be recorded in a
different mode to examine other facets of the ictal activity pattern. These paired
recordings of adjacent pyramidal cells then allowed us to tease apart the synaptic
drives onto these cells and their firing patterns. For instance, the second cell
could be recorded in current clamp or cell attached modes, to derive the firing
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Fig. 11.2 Example of paired recordings
from adjacent pyramidal cells. (a) Paired
recording with both cells held in the ‘refer-
ence mode,’ voltage clamped at −30 mV,
approximately midway between the reversal
potential for glutamate (approx. 0 mV), and
GABA (approx. −60 mV). The convention is
for inward currents (depolarizing, excitatory
currents) to be plotted as downward deflec-
tions. The period shows the transition period
from predominantly inhibitory to predomi-
nantly excitatory barrages, which is coinci-
dent with the ictal wavefront invading the
local territory. (b) Paired recordings of two
adjacent pyramidal cells in ‘reference mode’
at an expanded timescale. The recording
shows an interictal event, and synchronous
IPSCs are readily seen in the two traces (ar-
rowed), suggesting that the currents in both
cells are caused by synaptic events from
the same presynaptic interneuron. (c) One

cell is held at the reference holding poten-
tial (−30 mV) and the other is held at the
GABAergic reversal potential (EGABA). These
recordings show that, what appear to be
predominantly inhibitory events from the
−30 mV recordings, also have a huge ex-
citatory component. Indeed the excitatory
drive at these times would induce a typical
ictal discharge with many action potentials
in the absence of any inhibitory drive. (d)
The restraining period is best visualized by
holding one cell at the reference holding
potential (−30 mV), whilst recording the
output of the adjacent cell. Here we see a
protracted period of almost 15 s when the
second cell is held in check, firing just four
action potentials in this time. We know from
recordings like that shown in (c) that, during
this whole time, the cell is being bombarded
with intense excitatory barrages, yet the veto-
ing inhibition is the dominant force.

pattern corresponding to the synaptic barrages. Alternatively, the second cell
might be recorded at the GABA reversal potential, thereby allowing the excitatory
drive to be assessed in relative isolation. These were key experiments, and it is
important to understand that such paired recordings of adjacent cells are completely
impossible in vivo. These experiments could only have been done in an in vitro
preparation.
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Further details of these experiments are to be found in our recent publications
[12, 13, 24, 25]. I will restrict myself here to a summary of the main findings. The
model we chose to examine is one of the most widely studied in vitro seizure models,
induced by removing extracellular Mg2+ ions (0 Mg2+ model) [10, 16–20, 38].
Mg2+ ions normally provide the voltage-dependent blockade of NMDA receptors.
Removing Mg2+ thus increases the level of excitatory drive and it is this that causes
the epileptiform activity. The inhibitory circuitry on the other hand, is relatively
preserved, at least initially.

The earliest full ictal events, following the removal of extracellular Mg2+, progress
very slowly across the cortical network, and we were able to demonstrate that the
speed of propagation was the direct result of an inhibitory restraint ahead of the
ictal wavefront. If we take the perspective of an individual layer-5 pyramidal cell,
such as that shown in Figure 11.1, then the sequence of events as the ictal wavefront
approaches is the following. When the wavefront is still several hundred microns
away, the cell starts to experience rhythmic synaptic barrages at approximately δ

frequency (0.5–2 Hz), that is temporally matched to the rhythmic network activity
of the cells upstream, which have already been recruited to the event (Figure 11.3).
This temporal correspondence tells us that the synaptic barrage arises from the ictal
event, feeding forward onto the adjacent territories. The feedforward synaptic drive
includes a very powerful excitatory drive that ordinarily would exceed threshold
many times over, yet this drive does not activate the cells because it is vetoed by an
even more powerful feedforward inhibition.

The basic δ frequency rhythm of the ictal event means that the network experi-
ences repeated crises at this rhythm. These are the times when new neurons are
recruited to the event, and if recruitment is resisted at these crisis points, then the
ictal wave does not progress. The eventual recruitment of cells can be delayed in
this way for tens of seconds after the initial barrages. We showed that the speed
at which an ictal event traverses a region of cortex is inversely proportional to
how many crises were resisted [13]. This simple relationship explained propagation
speeds over a thousand-fold range of speeds. On occasions, the restraint event
outlasts the ictal activity, and the event is aborted altogether. These experiments
showed us, therefore, that the recruitment of pyramidal cells to an ictal event occurs
not when the initial excitation occurs, but rather when the inhibitory restraint fails.

The task ahead of us then, is to identify which cells provide the restraint, and why
it should fail. The fact that we can now study this important phenomenon in an
in vitro preparation will be a huge help in this endeavour. It is clear from other work,
however, that inhibition need only be slightly compromised to nullify the restraint
altogether. Thus, in brain slices bathed in a normal, non-epileptogenic medium,
focal electrical stimulation only activates the local territory, and this activity is
rapidly extinguished in the surrounding territory, much as in vivo. Barry Connors’
group explored what then happens if one perfuses increasing levels of GABAA

antagonist [26]. Initially, at levels which suppress evoked IPSCs only by about
10–20%, the focal activation is still contained, albeit not as well, activating roughly
double the area of cortex. When disinhibition was increased just a fraction more,
however, the focal activation spread with great speed, and without diminution,
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Occipital neocortex:
coronal slice

(i) Linescan: early 0 Mg2+ event
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Fig. 11.3 (a) Schematic of a coronal slice
showing the recording electrode (‘e’)
and the location of a ‘line scan’ through
layer 5. Imaging was done at 30 Hz using
a 10 × objective. (bi) Line scan show-
ing the neuropil Ca2+ fluorescence as an
epileptiform event progresses from top to
bottom – distance is plotted on the or-
dinate, and time on the abscissa. Each
row of pixels represents the neuropil Ca2+

fluorescence from a bin 40 µm high by 4 µm
wide (165 bins = 660 µm total length). The

location of the recording electrode (‘e’)
is shown. (bii) The Vclamp recording from
the layer-5 pyramidal cell plotted below on
the same time scale. The cell was held at
−30 mV, approximately half-way between
the reversal potentials for GABA and glu-
tamate, to distinguish inhibitory drives
(upward deflections) and excitatory drives
(downward deflections). Note the promi-
nent inhibitory volleys (arrowed) correspond-
ing with upstream activity in the line scan.
Figure used with permission from [12].

throughout the slice. Notably, further increasing the level of GABAA antagonist
had little effect on the propagation pattern or speed. In complete agreement with
Connors’ experiments, we also found that these same levels of disinhibition negated
the inhibitory restraint, allowing all spontaneously generated epileptiform events
to spread with great rapidity and with no delays across the entire tissue.

To summarize our in vitro work, in an epilepsy model with intact inhibition, there
is a powerful feedforward inhibition ahead of the ictal wavefront which can veto
the episodic excitatory barrages also emanating from the wavefront. The inhibitory
restraint though is relatively fragile, being compromised by relatively low levels of
GABAA antagonists. When present, however, the inhibitory restraint can explain a
very wide range of propagation speeds across cortical networks.
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11.5
Models of the Inhibitory Surround: The Importance of how Synaptic Inputs
are Distributed

The key feature of the inhibitory surround is that the inhibitory effect of focal
activation extends further than the excitatory effect. How is this achieved? A good
place to start is the excellent monograph by Traub and Miles [27]. Their insights
into epileptic activity derived from a gradual elaboration of a network model
incorporating thousands of connected multicompartment cellular models. Their
initial aim was to model activity patterns in the in vitro, disinhibition, experimental
model of epilepsy, identifying this as perhaps the most tractable of the experimental
models since it removed the requirement for modeling fast inhibition. They then
developed the model further to explore the effects of inhibition on epileptiform
activity, including a suggested basis for the inhibitory surround. Many of these
insights stand the test of time extremely well, although I believe that there is
one additional facet of the network which plays an important role in the inhibitory
surround: namely, the arrangement of synaptic terminals on the soma and proximal
dendrites of the pyramidal cells.

One way in which the inhibitory surround might extend beyond the focal
excitation is for inhibitory neurons to have a larger radius of axonal arborizations
than excitatory ones. While long-range inhibitory axons clearly do exist [28], they
appear to be at an extremely low density and rather patchily distributed. The
vast majority of inhibitory interactions are very local, and so it seems unlikely
that distant monosynaptic inhibitory interactions are the basis of the inhibitory
surround. A further argument against a long range-inhibitory axonal explanation is
that our experiments using brain slices consistently show evidence of the inhibitory
restraint in every recording: if the inhibitory restraint were based on long-range
connections, one might expect it to be very sensitive to the sectioning process.
The evidence then is that the inhibitory surround arises not through extended
monosynaptic pathways, but rather through disynaptic inhibitory pathways.

The key feature of Traub and Miles’ model is that epileptiform events only
propagate if excitatory neurons fire bursts of action potentials. The reason is that
excitatory neurotransmission between cortical neurons is very weak. Consequently,
recruitment of the next population of neurons requires protracted barrages of
excitatory synaptic events, and is thus the rate-limiting step in the propagation
process. This insight explains why propagation in the completely disinhibited slice
is about a factor of ten slower than axonal propagation. When inhibition is gradually
increased in their model, it brought about a precipitous drop in the likelihood of
epileptiform events arising from a single cell. This precipitous cut-off also mirrors
very well our [12] and other’s [26] results that increasing levels of GABAergic
antagonists have an all-or-nothing effect suppressing the inhibitory restraint. The
explanation is that pyramidal cell bursting in the model is peculiarly sensitive
to inhibition, an insight that received experimental support from dendritic patch
clamp experiments which showed that inhibitory drives onto the apical axonal
trunk disconnect the excitable apical tuft from the soma [29].
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In contrast to pyramidal cells, many interneuron cell classes are activated rather
more easily, and thus one sees a preferential recruitment of interneurons in the sur-
rounding territories. Furthermore, the differential recruitment of interneurons over
pyramidal cells would be expected to increase at greater distances from the focus of
activity. This then appears to explain the more distant inhibitory surround, but our
experiments suggest that there exists a vetoing inhibition that suppresses monosy-
naptic excitatory drive directly. Thus the inhibitory surround can be manifest within
a narrower confine than suggested by Traub and Miles’ proposed mechanism.

This more adjacent inhibitory restraint, I believe, arises from the peculiar
arrangement of synaptic drives on to pyramidal cells and interneurons, as noted
from electron-microscopy (EM) studies of cortical networks [30–32]. These studies
showed that, while interneurons receive excitatory drive across their entire soma-
todendritic axis, pyramidal cells only receive excitatory drive onto their more distal
dendritic branches. The somata and proximal dendrites (up to about 50 µm from
the soma) of pyramidal cells receive only inhibitory synapses arising from a partic-
ular subpopulation of interneurons, termed basket cells. (For this discussion, I will
ignore a second class of interneuron, the chandelier cell, which targets the pyrami-
dal axon initial segment, since their long presumed role vetoing action potential
generation in pyramidal cells has recently been confused by the suggestion that
they may be excitatory due to anomalies in local intracellular Cl− concentration.)

There is now a large body of evidence that basket cells can coordinate firing
in pyramidal cell populations [33], and particularly during γ rhythms (30–80 Hz)
[39–42]. This entrainment appears to occur by permitting pyramidal firing only be-
tween inhibitory postsynaptic currents (IPSCs); because IPSCs are synchronized on
large numbers of pyramidal cells, the windows of opportunity for pyramidal firing
are also synchronized. Basket cells can also fire at much higher rates than γ frequen-
cies, up to ≈300 Hz, and a simple consideration of the arrangement of their output
onto pyramidal cells suggests that this firing intensity can veto any amount of excita-
tory synaptic drive on to the pyramids [43]. Notably, an almost identical arrangement
of proximal inhibitory drive exists onto neurons which control the escape reflex in
crayfish [44]. In the same way that pyramidal neurons can be restrained by an in-
hibitory veto [12], the proximal inhibition in crayfish can veto the escape mechanism.

Thus there appears to be a nested set of inhibitory effects that underlie the
inhibitory surround: a very powerful inhibitory veto exerted directly onto the
somata and proximal dendrites of pyramidal cells, and a second less intense effect
arising from the preferential activation of interneurons over pyramidal cells at a
distance from the ictogenic focus.

11.6
Surround Inhibition: Implications for Seizure Prediction

If the inhibitory restraint is mediated in part through high-frequency firing of
basket cells, does this have any bearing on the association of fast EEG ripples with
seizure initiation? Several studies have noted that the critical stage of recruitment
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of neurons to an ictal event is accompanied by the appearance of high-frequency
oscillations in the local field recordings, leading to the proposal that these high-
frequency ripples are in some way causing the seizure. Indeed, high-frequency
oscillations are considered to be one of the most useful features of EEG recordings
in our efforts to develop seizure prediction algorithms.

Careful analysis of the source of high-frequency ripples associated with certain
physiological events in the hippocampus, indicated that the peak density of current
is in the pyramidal cell layer [34]. These authors proposed that the predominant
current was through GABAA channels opened by high-frequency basket cell dis-
charges. My recent work suggests that the inhibitory restraint may be mediated
through this same pathway, giving a rather different view of fast ripples: that these
high-frequency ripples in the EEG are in fact an epiphenomenon of the inhibitory
restraint.

At the outset, it is important to realise that the proposed mechanism of Ylinen
et al. cannot explain high-frequency ripples in the non-synaptic in vitro model of
epilepsy, induced by bathing brain slices in a Ca2+-free medium [35]. The fast
ripples in the 0 Ca2+ model, however, have a rather different pattern to those
recorded in models with intact synaptic transmission: in the non-synaptic model,
the ripples shows a gradual build up over many minutes, with slight modulations
of the amplitude. In this model, the high-frequency events appear to be action
potentials, recorded extracellularly from many different neurons, whose activity
gradually becomes synchronized, either by ephaptic means [36] or though gap-
junction coupling of their axonal plexus [37]. In contrast, in synaptic models,
the ripples come in relatively short bursts lasting a few hundred milliseconds.
A significant component of the fast ripples in these synaptic models, I suggest, is
from perisomatic high-frequency inhibitory barrages.

How does this new interpretation of fast ripples change our view of them as a
predictive measure of seizures? It certainly necessitates a more nuanced view of
fast ripples. Their presence in the EEG trace should still be indicative of a high
risk of imminent seizures, since the implication is that the cortical network is
under threat. Their presence though is also indicative of attempts by the network
to restrain that threat. If, on the other hand, the inhibitory restraint was severely
compromised for whatever reason, then one might anticipate seizures to evolve
very suddenly with no warning in the form of high-frequency EEG ripples. Such
a pattern is seen in myoclonic epilepsy, an epilepsy phenotype that has proved
notoriously resistant to our attempts to predict seizures.
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12
Is Prediction of the Time of a Seizure Onset the Only Value
of Seizure-prediction Studies?1)

Anatol Bragin, Jerome Engel Jr

12.1
Purpose of Seizure-prediction Research

The principal goal of research on seizure prediction is to determine when a seizure
is going to occur. The narrower the latency of the prediction, and the lower
the number of false detections, the greater the value of the prediction software
to permit seizure prevention, or protection against injury. In addition to this
important clinical objective, it is worthwhile to consider whether the results of
seizure prediction research might also provide new insights into the glial neuronal
mechanisms responsible for ictal initiation.

In most publications dealing with seizure prediction, the seizure itself is regarded
as an amorphous phenomenon characterized by a singular pathological activity and
subsequent ictal clinical manifestations. There has been little concern regarding
the fact that available seizure prediction data all appear to demonstrate that the
electrical activity of the brain during the preictal state changes in only one direction.
Depending on terminology, this has been defined as a decrease in dynamical
similarity of electrical signal recorded from different electrodes, reduction in
correlation dimension, or reduction of complexity of the signal [1–6]. All of these
changes in nonlinear characteristics reflect a decrease in the degree of synchronicity
of brain electrical activity. In contrast to published results on non-lineal analysis
of preictal EEG, which implies that the transition periods of all seizures share a
similar ‘route’ toward a clinical ictal manifestation, there are, in fact, many different
types of epileptic seizures, which are believed to result from a variety of different
underlying glial neuronal ictogenic mechanisms.

1) This work was supported by NIH grants
NS-33310, NS-02808.

Seizure Prediction in Epilepsy. Edited by Björn Schelter, Jens Timmer and Andreas Schulze-Bonhage
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Fig. 12.1 Examples of different types of seizure onsets in
patients with mesial temporal lobe epilepsy. (a) Hypersyn-
chronous onset. (b) Low-voltage fast onset with an ini-
tial suppression. (c) Low-voltage fast onset with recruiting
rhythm.

12.2
Seizure Onsets in Patients with MTLE

According to ILAEs Classification Task Force there are over 25 different seizure
types [7]. In spite of immense efforts clinicians have not reached a consensus on
a uniform classification of seizures on the basis of their electrographic patterns.
Patients with mesial temporal lobe epilepsy (MTLE) show a variety of different
patterns of seizure onsets. However, two main types have been described [8–10].
The most common is a hypersynchronous (HYP) onset (Figure 12.1a), which is
characterized by the occurrence, or increases in the rate of regularly repetitive
interictal spikes (IIS) before seizure spread. The second is a low-voltage fast
(LVF) onset (Figure 12.1b), which is characterized by an initial suppression of the
EEG amplitude and an increase in frequency of EEG activity, and can involve
a monotonous increase in the amplitude of the wide-band frequencies of brain
electrical activity referred to as a recruiting rhythm (Figure 12.1c) [9].

An important question with respect to the different types of electrographic seizure
onset patterns is whether underlying glial-neuronal mechanisms are the same or
different. Another question is whether the networks in which the disturbances
occur are the same or different.

12.3
Factors Triggering Seizure Activity

Multiple precipitating factors that trigger seizure activity have been described in
many publications (see [11–13] for review). Among them are: a) failure of effective
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GABA inhibition while the strength of excitatory connections between principal
cells remains normal; b) increase in glutamatergic excitation, as might occur with
failure of glial cells to clear glutamate from the extracellular space; c) impairment of
the K+ pump leading to the accumulation of potassium in the extracellular space;
and d) abnormal influx of Ca2+ in soma and dendrites. All of these factors could
initiate seizures by disrupting the networks that prevent abnormal synchrony of
neuronal discharges. It is reasonable to assume that at least some of these factors,
or groups of factors, will evoke different electrographic patterns of seizure onset.

12.4
Simulating Human Electrographic Patterns of Seizure Onsets in Acute In Vivo Animal
Experiments

It is generally accepted that the imbalance between inhibitory and excitatory
networks leads to seizure activity. We asked if different types of seizure onset
patterns could be produced depending on whether they were triggered by weakening
the GABA-ergic system or enhancing glutamatergic systems. We evoked the
imbalance between excitation and inhibition using two methods: 1) by injecting
bicuculline (1 µl of 100 µM) into area CA3 of hippocampus, which causes blockade
of the GABAA receptors; and 2) by injecting kainic acid (KA, ∼2 nanoM/0.2 µl) into
area CA3 as a glutamatergic excitatory agent. Recording electrodes were implanted
into the dentate gyrus (DG) adjacent to the point of injection. Experiments were
carried out under freely moving conditions. We compared the pattern of EEG
epileptiform activity of both drugs in each rat at an interval of two days or greater.

In all rats treated with bicuculline, the initial changes in baseline activity started
with the occurrence of high-amplitude epileptiform spikes (Figure 12.2a). The
appearance of the behavioral seizure component coincided with an interruption

Bicuculline

15 s

CA3 injection point

CA3 injection point

Dentate gyrus

Kainic acid

180sDentate gyrus

(a)

(b) Behavioral
seizure

Behavioral
seizure

1mV

Fig. 12.2 Seizure onsets induced by intrahippocampal injec-
tion of bicuculline (a) and kainic acid (b) in the CA3 area of
hippocampus and dentate gyrus in the awake rat.
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of epileptiform spike activity and its replacement by high-amplitude sinusoidal
5–20 Hz activity. In all rats treated with KA the pattern of epileptiform events prior
to the appearance of the behavioral component of the seizure was different from
the pattern that occurred after bicuculline injection (Figure 12.2b). It consisted
of a gradual increase in the amplitude of the EEG signal with steep increase in
amplitude near the appearance of the behavioral seizure. This gradual increase
in amplitude occurred primarily because of an increase in the power of beta
and gamma activity and an increase in the amplitude of population spikes. EEG
activity in the frequency band between 0.1 Hz and 10 Hz decreased during the
transition period, and reappeared during the appearance of the behavioral seizure
(not shown).

12.5
Conclusions

Our results demonstrated that manipulation of GABAergic inhibition in the rat
hippocampus produced a very different EEG pattern during transition to ictus than
manipulation of the glutamatergic system. Bicuculline injection led to a pattern
resembling the HYP ictal onsets in patients with MTLE, while KA produced a
recruiting rhythm similar to LVF ictal onsets in patients with MTLE. It is unclear
at this point why a blockade of inhibition would produce hypersynchronization,
which is believe to require enhanced inhibition [14–17], although undoubtedly
bicuculline blocks some inhibitory mechanisms and not others. Similarly, it is
unclear why KA should produce a recruiting rhythm, which is believed to repre-
sent a breakdown in inhibitory mechanisms [18–24]. Although future research
is needed to elucidate the neuronal networks responsible for these different ictal
onset patterns, they strongly suggest that the transition to ictus does not utilize
a common final pathway for all types of epileptic seizures. It is reasonable to
assume, therefore, that preictal changes leading up to the transition would also
vary depending on the underlying triggering mechanisms and ultimate ictal mani-
festations. Why, then, have clinical studies of seizure prediction resulted in similar
EEG changes regardless of the types of seizure under study?

Using microelectrode recordings, we have previously shown that high-frequency
oscillations, termed ‘Fast Ripples,’ could represent the basic pathological distur-
bance underlying epileptogenicity in human MTLE and animal models of this
disorder [25–29]. We have further shown that Fast Ripples are generated in widely
dispersed, small, discrete clusters of neurons that can be difficult to locate, and
that the size of these clusters may be increased by altering excitatory/inhibitory
influences [25]. Based on this, we suggested that a possible mechanism of ictogen-
esis might involve a gradual consolidation and synchronization of areas generating
Fast Ripples until a critical mass is reached that permits propagation to distant
areas [30]. Although Fast Ripples can be recorded by standard electrodes at seizure
onset [31, 32], if the glial neuronal mechanisms underlying ictogenesis actually
begin in very small discrete areas, it is unlikely that they would be easily detectable
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by macroelectrodes during the preictal period. Rather, an alternative explanation
for the non-lineal EEG alterations revealed by seizure prediction studies might be
that these do not reflect ictal mechanisms at all, but, rather, homeostatic protective
mechanisms that the brain naturally generates in order to prevent the changes
that would eventually result in an epileptic seizure. This might also explain why
the preictal electrical activity appears to be a decrease in synchronicity, when
ictal activity is known to involve pathologically increased synchronization. Studies
of seizure prediction in animal models of different types of epileptic seizure,
generated by different precipitating mechanisms, would be useful to determine
exactly what the preictal alterations in EEG activity identified by seizure prediction
research actually represent; specifically whether they reflect ictogenic, or seizure-
suppressing mechanisms. Such research will not only aid in the principal goal
of seizure prediction research, but might also help to devise novel approaches to
prevent seizure occurrence once this has been predicted.
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13

High-frequency Pre-seizure Activity and Seizure Prediction

Premysl Jiruska, John G.R. Jefferys

Identifying unambiguous changes in cortical activity during the tens of seconds to
minutes before epileptic seizures has the potential radically to improve treatment
for people with epilepsy. For instance, it can be used to trigger adaptive treatments,
such as therapeutic electrical stimulation (discussed elsewhere in this monograph)
or focal drug delivery, which could interfere with mechanisms involved in tran-
sition to seizure. Methods for seizure prediction are described extensively in this
monograph. They mainly use EEG data from patients with analyses ranging from
the relatively simple to the exceedingly complex. However, the ideal method with a
high sensitivity and low false positive rate has yet to be found. There is an argument
that understanding the neuronal and/or population behavior preceding seizures
will greatly help to identify better approaches to prediction [1], and may also lead
to improved therapeutic targets. Here we will focus on high-frequency pre-seizure
activity (HFA) as a candidate population behavior for this role. Fast activity has been
linked with epileptic foci since the early 1990s [2, 3], and has been implicated in
the processes of ictogenesis [4] and epileptogenesis [5]. In this article we will focus
on its role in transition to seizure, briefly summarize current knowledge about
HFA and suggest possible future developments. The run-up to focal seizures has
been associated with the build-up of HFA >80 Hz [2,3,6,7]. Several human studies
demonstrated the presence of the fast activity at the beginning of, or early in,
seizures from invasive recordings before any clinical symptoms occurred [2,3,6,7].
Experimental observations of HFA at seizure onset have been made in both in
vivo [8] and in vitro [4] models. However, HFA at transition to seizure usually
lasts only several seconds. HFA lasting tens of seconds before seizure onset are
exceptional [7]. Periods of abnormal activity lasting just a few seconds before the
seizure make reliable seizure prediction exceedingly difficult, if not impossible:
if the detection occurs after the seizure has already started then interfering with
ictogenic mechanisms is likely to be more difficult than if reliable prediction can
be achieved earlier (although in this case identifying false positives becomes more
of a challenge).

Seizure prediction research depends on the assumption that focal seizures are
not sudden (abrupt) events, but that they are preceded by gradual changes in
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brain and neuronal circuit dynamics. The terms preictal, or pre-seizure, period
are useful to describe a gradual transition from the purely interictal state to the
seizure state. However, much work remains to be performed to demonstrate
clearly whether the preictal period really exists, and to identify its biological
markers and its biological mechanisms [9]. Recent work in vitro demonstrated that
HFA progressively increased in advance of the onset of electrographic seizures
and served as a preictal marker [10, 11]. Similar observations have been made
in human patients [7]. This study showed that the energy of HFA progressively
increased more than 20 minutes preceding the onset of seizure and giving it the
potential to be used as a marker for the preictal state in humans. It has been
shown that fast activity is highly specific for epileptic foci: removal of the areas
generating HFA is associated with increased success of epilepsy surgery. However,
many questions remain. Do ictal HFA and preictal HFA share similar cellular
and subcellular mechanisms? What are their spatio-temporal dynamics? Perhaps
the most important is whether fast activity really is part of the pathophysiology
or whether it is just an epiphenomenon? If the latter, it still could be used as
a marker of upcoming seizure and marker defining the preictal state. If the fast
activity also had a pathogenic role, then understanding mechanisms involved
in its genesis and its spatiotemporal dynamics would facilitate development of
therapeutic approaches which directly target ictogenesis. Several theories on the
origins of fast activity have been suggested by experimental observation.

One argues that HFA results from complex synaptic interactions between
interneurons and pyramidal cells which then results in synchronized IPSPs
generated at the level of pyramidal cells’ somata. This mechanism is involved
mainly in physiological high-frequency activity which is probably involved in
memory consolidation [12, 13]. Draguhn et al. describe fast activity which survives
a block of chemical synaptic transmission and must be generated by non-synaptic
mechanisms [14]. Experiments and computer modeling suggested that this fast
activity is due to synchronization of pyramidal cells action potential firing via axonal
gap junctions [6,14], although the poor specificity of agents that block gap junctions
and the low incidence of coupled pyramidal cells suggests we cannot exclude
other mechanisms such as ephaptic interactions [15]. Gap-junction blockers have
suggested similar mechanisms may apply in neocortical high-frequency activity [8].
The fast activity at the onset of seizure activity in the low-calcium model in vitro
reported by Bikson et al. has a non-synaptic origin [4] (Figure 13.1), and our recent
work with the high-potassium model (Figure 13.2) argues that similar mechanisms
apply even if chemical synapses are not blocked.

A further complication for the search for mechanisms (and functional conse-
quences) is the classification of different frequency bands of fast activity, notably:
around 80 Hz, around 200 Hz (ripples) or very fast activities between 250 and
500 Hz (fast ripples). Whether these classifications are functionally significant,
or even whether they should be subdivided further remain open questions. For
example, Bragin et al. stress that fast ripple activity is much more specific for
epileptic foci and that spatial and depth profiles of fast ripple and ripple activity
differ [16] suggesting different underlying mechanisms. For practical purposes of
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Fig. 13.1 Hippocampal slice perfused in
low-calcium artificial cerebrospinal fluid
leads to development of spontaneous recur-
rent electrographic seizures. (a) Recording
from CA1 region (DC removed). (b) Seizure
onset is characterized by occurrence of
low-amplitude high-frequency activity, which

is well demonstrated in corresponding
wavelet spectrogram (arrows). (c) Detail of
seizure onset. (d) Corresponding wavelet
power spectrum demonstrating peak fre-
quency at 98 Hz. (Please find a color version
of this figure on the color plates.)

2 mV
5 s

0.4 mV
5 s

500

0

[H
z]

−2

−15 lo
g 

(m
V

2 )

(a)

(b)

(c)

Fig. 13.2 Hippocampal slice perfused with
high-potassium ACSF. (a) Recording from
CA1 region shows presence of repeated
electrographic seizures. Seizures are su-
perimposed on large DC shifts. (b) Band-
pass filtered data (80–250 Hz) show that
seizures are preceded by gradual build-up of

high-frequency activity. (c) Corresponding
wavelet spectrogram demonstrates that the
build-up of high-frequency activity has a peak
frequency of 200 Hz (arrows). (Please find
a color version of this figure on the color
plates.)
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seizure anticipation it is necessary to determine which frequencies are relevant for
the epileptic focus and seizure genesis, and whether they differ between different
classes of epilepsy and/or different regions.

While the association between HFA and epileptic foci seems to be strengthening,
much remains to be resolved on both its roles and its mechanisms. Critical
comparisons of the HFA found in experimental observations in vitro, in vivo and
human studies will provide a better understanding of both its mechanisms and role
in ictogenesis. We believe that a key element in these investigations will be improved
signal analysis methods including the analysis of interactions between multiple
recording channels [17, 18]. A crucial practical issue remains. Both experimental
and clinical data show that HFA is often highly restricted spatially. This can be
an advantage for localization. However, it complicates answering the question of
whether all focal seizures are preceded by a build-up of fast activity. Negative
results do not necessarily mean that HFA is absent: the electrode placement could
miss the small regions of the brain that generate HFA, or, on a more mundane
note, many clinical recording systems lack the technical specifications needed to
record and/or detect HFA. Therefore, the implementation of methods of seizure
prediction based on detecting of HFA will require the development or modification
of many recording protocols currently used in the clinic. Wide-band recording
setups with electrodes small enough to avoid spatial averaging of the small HFA
signal are necessary requirements. Smaller electrodes will lead to the need for
larger numbers of electrodes to cover large brain areas with a good enough spatial
resolution to find regions of preictal HFA. One approach to this problem that
has proved successful is the use of hybrid electrodes which combine conventional
invasive electrodes with microwire electrodes [19].
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14
Characterizing the Epileptic Process with Stochastic Qualifiers
of Brain Dynamics

Jens Prusseit, Christian E. Elger, Klaus Lehnertz1)

14.1
Introduction

Over recent years, linear and nonlinear analyses of electroencephalographic (EEG)
time series have provided valuable insights into the complex spatial-temporal
dynamics of physiological and pathophysiological brain functions (see [1, 2] for
an overview). These processes, however, are far from being fully understood. In
epilepsy, particularly nonlinear time series analysis techniques provided informa-
tion relevant for diagnostic purposes by allowing an improved characterization of
intermittent dysfunctioning of the brain between epileptic seizures [3–6]. Moreover,
there are indications that these approaches might be able to extract characteristic
features from the continuous EEG that are predictive of an impending seizure. This
could be of great value for the development of seizure warning systems and for a
further improvement of seizure prevention techniques (see [7, 8] for an overview).
Nevertheless, there are a number of problems that can be related to the fact that the
aforementioned analysis techniques preferentially focus on the low-dimensional
deterministic part of the dynamics. Thus they might not be able to capture cru-
cial aspects of the EEG that, in many cases, have to be regarded as stochastic
(high-dimensional). In [9, 10] a time series analysis approach was introduced that
explicitly takes into account the stochastic nature of signals. Using this technique,
we recently analyzed multi-day, multi-channel EEG data recorded intracranially
from patients suffering from refractory focal epilepsies and showed that this
approach allows an improved characterization of pathological brain dynamics [11].

This time series analysis approach relies on the well known fact that dissipative
dynamical systems under the influence of noise can often be successfully modeled
by Fokker–Planck equations [12–15]. For the analysis of empirical data (such as the
EEG) the mathematics of diffusion processes is used to estimate drift and diffusion
coefficients at a number of points in the state space of the dynamical system

1) We are grateful to Joachim Peinke and
Rudolf Friedrich for useful discussions and
valuable comments. This work was supported

by the Deutsche Forschungsgemeinschaft
(SFB-TR3 sub-project A2 and LE660/4-1).
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(e.g., the brain). As a result, a general Langevin equation or a Fokker–Planck
equation can be extracted from the measured time series data. However, since
the reconstruction of Fokker–Planck equations from observed time series data
suffers strongly from finite sampling rates, correction terms [16–18] as well as
extensions [19] of the original approach have been devised, which allow a more
robust estimation of the diffusion terms. Addressing the issue of non-stationarity,
an averaging procedure has been presented recently in [20] that allows one to
reliably estimate the dynamics of diffusive Markov processes in certain situations.
Moreover, in [21, 22] the analysis technique was extended further to handle both
dynamical and measurement noise.

Besides having been tested successfully on artificially generated time series from
well known dynamical systems (including nonlinear oscillators and chaotic systems
[10, 23–25]), over the last decade the approach has already found applications in a
variety of disciplines. Apart from physics [9,26–32] we mention engineering [25,33],
economics [34, 35], sociology [36], and meteorology [37]. In addition, the method
has been introduced in the biomedical domain by investigating different types
of physiological and pathophysiological tremor [24], heart-rate fluctuations under
normal [38] and pathological (congestive heart failure) conditions [39], and, more
recently, rhythmic movement in humans [40]. These studies indicate the potential
of the approach to gain deeper insights into the underlying dynamical processes,
and also for diagnostic purposes.

We here present an overview of the method with a special emphasis on analyses
of EEG recordings from epilepsy patients and discuss its relevance for a spatial and
temporal characterization of the epileptic process. After a brief introduction of the
basics of the time series analysis approach in Section 14.2, we show, in Section 14.3,
results from an analysis of intracranial EEG recordings. We first discuss, in Section
14.3.1, results that are typical for intracranial EEG recordings from patients suffer-
ing from focal epilepsies. In Section 14.3.2 we present a framework to characterize
epileptic brain dynamics using data-driven Fokker–Planck models. Specifically we
present our results obtained from analyzing long-term, multi-channel EEG record-
ings in the context of localizing the epileptic focus during the seizure-free interval
and in the context of seizure prediction. In Section 14.4 we draw our conclusion.

14.2
Data-driven Fokker–Planck Models

A stochastic dynamical system that can be described by a one-dimensional Langevin
equation

ẋ(t) = h(x(t), t) + g(x(t), t)�(t) (14.1)

is completely determined by the functions h and g. The state of the system is denoted
by x(t), and �(t) is a delta-correlated Gaussian noise process with vanishing mean:〈

�(t)
〉 = 0 and

〈
�(t)�(t′)

〉 = δ(t − t′). (14.2)
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In (14.1) the function h describes the deterministic part of the dynamics and g is the
amplitude of the driving noise force. If g depends on the state x, the stochastic part
is referred to as multiplicative dynamical noise, otherwise as additive dynamical
noise. Because of the delta-correlation of the noise equation (14.1) generates
realizations of a Markovian stochastic process X (t) whose conditional probability
density function (PDF) obeys a Fokker–Planck equation [14]:

∂

∂t
p(x, t|x′, t′) =

(
− ∂

∂x
D(1)(x, t) + ∂2

∂x2
D(2)(x, t)

)
p(x, t|x′, t′). (14.3)

The functions D(1) and D(2) are called drift and diffusion coefficients of the process.
The Fokker–Planck equation is a special case of a more general evolution equation
for continuous Markov processes, namely the Kramers–Moyal expansion, which
reads

∂

∂t
p(x, t|x′, t′) =

[ ∞∑
n=1

(−∂n)

∂xn
D(n)(x, t)

]
p(x, t|x′, t′). (14.4)

The coefficients D(n) can be defined in a statistical sense using the conditional
moments of the stochastic variable X (t) [14]

D(n)(x, t) = 1

n!
lim
τ→0

1

τ

〈[
X (t + τ) − X (t)

]n〉
X(t)=x (14.5)

where 〈〉X(t)=x denotes the ensemble average over all realizations of X for which
X (t) = x at time t.

For processes which can be described by a Langevin equation, i.e., processes that
are driven by delta-correlated Gaussian noise, the functions D(n) are related to the
functions h and g of the corresponding Langevin equation by [14]:

D(1)(x, t)
(I)= h(x, t) (14.6)

D(1)(x, t)
(S)= h(x, t) + g(x, t)

∂

∂x
g(x, t) (14.7)

D(2)(x, t) = (
g(x, t)

)2
(14.8)

D(i)(x, t) = 0, ∀i > 2. (14.9)

The relation for the first coefficient depends on whether Ito’s (I) [41] or Straton-
ovich’s (S) [42] definition of stochastic integrals is used for the interpretation of
the Langevin equation. Relation (14.9) is a consequence of the so-called Pawula
theorem [43], which states that the Kramers–Moyal expansion either has an infinite
number of terms or simplifies to a Fokker–Planck equation if the first and/or the
second term are retained. For any other finite number of non-vanishing coefficients
the PDF that solves (14.4) becomes negative. It is possible to show that, if one
coefficient with n > 2 (where n is an even integer number) is zero, then all
coefficients with n > 2 vanish. This is the case if the driving noise force �(t) in the
Langevin equation (14.1) has a Gaussian distribution.
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For a stationary (and ergodic) process X (t) the ensemble averages in (14.5) can
be replaced by time averages over one realization of the process. It is therefore
possible to estimate the coefficients of the Kramers–Moyal expansion from time
series by evaluating the conditional moments in (14.5) for finite time steps τ, and
then extrapolate to τ = 0 [10, 24]. For this purpose, the condition X (t) = x in (14.5)
has to be replaced by X (t) ∈ U(x), where U(x) is an interval containing x that is
usually fixed by some partitioning of the state space. Because of this discretization
of the state space the values of the coefficients are estimated at fixed discrete values
of x and can later be fitted by analytical functions, if necessary.

For this analysis method to be applicable, the time series under consideration
has to be Markovian, i.e., a process without memory, which requires the condition

p(xk, tk|xk−1, tk−1; . . . , x1, t1) = p(xk, tk|xk−1, tk−1) (14.10)

to be fulfilled for arbitrary k and all values of t1 ≤ t2 ≤ . . . ≤ tk. For experimentally
derived time series with a limited number of data points the Chapman–Kolmogorov
equation can be checked more reliably

p(x3, t3|x1, t1) =
∫

dx2p(x3, t3|x2, t2)p(x2, t2|x1, t1) (14.11)

where t1 < t2 < t3. This equation is a necessary (but, in general, not sufficient)
condition for the process to be Markovian.

14.3
EEG Analysis

In this section we present findings obtained from applying the time series analysis
method described above to multi-channel EEG time series that were recorded
from patients suffering from refractory temporal lobe epilepsy. For these patients,
complete seizure control can be achieved by surgically removing the part of the brain
responsible for seizure generation (epileptic focus). Since a clear cut localization of
the epileptic focus could not be accomplished by means of scalp EEG recordings
and other evaluation techniques, intracranial electrodes (cf. Figure 14.1) were
implanted during presurgical evaluation. All patients achieved complete seizure
control after surgery so the epileptic focus can be assumed to be contained within
the resected area. The EEG time series analyzed here were sampled continuously
over a longer period (5–12 days) with bandpass filter setting of 0.5–85 Hz (12
dB/octave) using a common average reference. The sampling interval ∆t was 5 ms,
and analog–digital conversion was performed at 16-bit resolution.

14.3.1
Markov Property and Characteristics of Estimated Kramers–Moyal Coefficients

We first present exemplary results obtained from analyzing EEG time series that
were recorded during the seizure-free interval from within the epileptic focus
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D TL TB

Fig. 14.1 Scheme of intracranial electrodes used for the
presurgical evaluation of epilepsy patients. Depth electrodes
(10 contacts each, D) were implanted symmetrically into the
hippocampal formations. Strip electrodes were implanted
onto the lateral (4–16 contacts, TL) and basal regions
(4 contacts each, TB) of the neocortex.

(denoted as focal time series) and from distant brain regions (denoted as non-
focal time series). An EEG recording is an important example of a non-stationary
time series [44] where especially robust changes occur during epileptic seizures.
In the literature the period of time within which an EEG recorded during the
seizure-free interval can be considered as approximately stationary varies from
seconds to minutes [45, 46]. For the analyses presented here, we used EEG time
series with N = 100 000 and N = 50 000 data points (corresponding to recording
durations of 8.3 min and 4.2 min respectively). For these window sizes we obtained
qualitatively similar results, and the observed effects became less pronounced for
smaller window sizes.

As already mentioned in Section 14.2, for the analysis method to be applicable,
the time series under consideration has to be Markovian. This property, however,
cannot be proven in a strict mathematical sense when dealing with time series of
finite size. Nevertheless, in order to get an indication for the property (14.10) to be
approximately fulfilled, one might consider the Chapman–Kolmogorov equation
(14.11) to find the smallest time shift τ (in units of the sampling interval ∆t),
for which the time series appears to be Markovian. For this purpose the left- and
right-hand sides of the Chapman–Kolmogorov equation with a fixed time shift
t3 − t2 = t2 − t1 = τ

p(x3, t + 2τ|x1, t) =
∫

dx2 p(x3, t + 2τ|x2, t + τ)p(x2, t + τ|x1t) (14.12)

have to be estimated and the resulting conditional PDFs can then be compared.
In Figure 14.2 we show results for exemplary EEG time series recorded from a
distant brain region and from within the epileptic focus (Figure 14.2(a)). For both
EEG time series it can be observed that (14.12) appears to be fulfilled, at least
approximately, for the smallest available time shift τ = 1 sampling interval. Except
for small deviations, which could be caused by the limited amount of data, the two
distributions coincide in each case (cf. Figure 14.2(b) and (c)), and we take this as
an indication for Markovian properties on that time scale.

Having fixed the time shift to τ = 1 sampling interval as a possible Markov time
scale, the next step is to estimate the first, second, and fourth Kramers–Moyal
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Fig. 14.2 Sections of exemplary time se-
ries recorded from a distant brain region
(denoted as non-focal) and from within
the epileptic focus (denoted as focal) (a).
Comparison of the left- (dashed lines)
and right-hand side (solid lines) of the
Chapman–Kolmogorov equation for the
two exemplary EEG time series of size

N = 100 000 data points: non-focal time
series (b), focal time series (c). Contour
lines (upper parts of (b) and (c)) and cuts
through the resulting conditional PDFs
(lower parts of (b) and (c)) for a time shift
of τ = 1. Contour plots were generated using
an increment between contour lines of 0.02
for (a) and 0.012 for (b).

coefficient according to (14.5). For an automated and computationally inexpensive
estimation of the coefficients (e.g., when analyzing long-term multi-channel EEG-
data; cf. Section 14.3.2) a fixed time shift τ can be used, i.e., the limit τ → 0 is not
performed. When neglecting the limit one has to keep in mind though that this can
result in erroneous contributions of order O(τ2) in the estimation of the conditional
moments according to (14.5), which can alter the functional characteristics of the
estimated coefficients (see [16–18]).

In Figure 14.3 we show estimated coefficients that are characteristic for intracra-
nially recorded focal and non-focal EEG time series using the one-dimensional
approach described in Section 14.2. All coefficients usually assume larger abso-
lute values for focal EEG time series than for non-focal ones. In particular, the
magnitude of the values of the fourth coefficient D(4) is often larger by a factor of
about twenty for the focal EEG, which – assuming Markov properties – indicates a
strong deviation from a Gaussian behavior of the driving noise force (cf. Section
14.2). As shown in [11] this corresponds to the finding that a description of EEG
recordings by one-dimensional Fokker–Planck models might be less appropriate
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Fig. 14.3 Estimated Kramers–Moyal
coefficients D(1), D(2), and D(4) for exemplary
EEG time series from two patients (for each
patient left column: from a distant brain re-
gion (denoted as non-focal); right column:
from within the epileptic focus (denoted as

focal)). Shown are estimates for time series
consisting of 100 000 data points (squares),
and error bars indicate the statistical errors
of the estimation of the averages according
to (14.5) for each value of x.
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for pathophysiological activity recorded from within the epileptic focus than for
activities recorded at distant sites. For the non-focal EEG time series the first coef-
ficient D(1) typically exhibits an overall linear damping behavior, whereas for focal
time series D(1) often shows pronounced nonlinearities toward higher amplitude
values, which is in line with findings obtained from applying nonlinear time series
analysis methods (e.g. [6]). The influence of the noise generally appears to be mul-
tiplicative as indicated by non-constant coefficients D(2). In principle, deviations
from an additive behavior (i.e., D(2) = const.) of estimated second Kramers–Moyal
coefficients can originate from higher order correction terms in the time shift
τ if a finite τ is used for the estimation instead of performing the limit τ → 0.
Whether this is indeed the case can be checked by considering a Taylor expansion
of the second conditional moment [17, 18]. For the examples shown in Figure
14.3 it can be shown – by calculating the higher order terms in τ using the esti-
mated first coefficients along with different constant second coefficients of varying
magnitude – that the influence of these higher order terms cannot explain the
observed multiplicativity of the estimated second coefficients. In addition, it can
often be observed that the second coefficient D(2) appears to be more asymmetric
for focal than for non-focal EEG time series.

Summarizing this section, we conclude that there are indications that intracra-
nially recorded EEG time series can be regarded as Markovian. Furthermore, there
seem to be specific characteristics of the estimators of the Kramers–Moyal coeffi-
cients that allow one to differentiate between physiological and pathophysiological
activities, and may thus be useful for a characterization of epileptic brain dynamics.

14.3.2
Relevance for a Spatial and Temporal Characterization of the Epileptic Process

Based on the findings presented in the previous section we now define measures
that allow one to extract information from the estimated Kramers–Moyal coeffi-
cients, which appears to be characteristic for pathological processes in the epileptic
brain. In order to allow an automated processing of EEG data using a moving-
window technique we applied the following preprocessing steps. For each window
we generated an amplitude histogram, which was, in general, unimodal for EEG
recordings from the seizure-free interval. Then the amplitude values to the left and
to the right of the mode were determined for which the relative frequency dropped
to 5% of the relative frequency of the mode of the distribution. Only amplitude
values confined to the thus-defined interval were considered for further analyses
and were normalized to zero mean and unit variance. This procedure excludes
occasional high-amplitude artifacts and allows one to use a fixed number of bins
when estimating the probability densities, thereby ensuring a comparable coverage
of the EEG amplitude range for each window.

As stochastic qualifiers of brain dynamics we here consider the range covered by
the values of the estimated first and second coefficients D(1)(x) and D(2)(x):

R1,2 := ∣∣max
(
D(1,2)(x)

) − min
(
D(1,2)(x)

)∣∣ . (14.13)
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To account for statistical fluctuations, only D(1,2)(x) values entered the calculation
that were determined by more than 100 amplitude values in the bin U(x) of the
partitioning of the state space that contains x.

In Figure 14.4 we show exemplary sections of the spatial-temporal distributions
of R1 and R2 values. The EEG data were recorded during the seizure-free interval
from a patient with an epileptic focus located in the right medial temporal lobe.
Highest values of R2 can be observed for recording sites confined to regions
close to or within the epileptic focus (the sixth and seventh contact of the right
depth electrode D). Although R1 also assumes its highest values for contacts from
this brain region, there are other – ipsilateral and contralateral – regions, which
exhibit R1 values of comparable magnitude. Since these effects were stable for long
recording periods, we calculated, for each channel, temporal averages 〈R1〉 and 〈R2〉
presented in Figure 14.4(b) and Figure 14.4(d), respectively. With R2 a localization
of the epileptic focus was possible for this patient using our approach without
observing actual seizure activity. However, when analyzing EEG data from a group
of eight patients, we observed that such a clearcut identification of the epileptic focus
was not always possible. Nevertheless, we could show that R2 allowed to correctly
lateralize the focal hemisphere using data from the seizure-free interval only [11].

We next address the question whether our approach allows one to identify char-
acteristic temporal changes of EEG activity predictive of an impending seizure. We
here followed [47] and performed a retrospective evaluation assuming the existence
of a preictal state of fixed duration (240 minutes), and applied the concept of seizure
time surrogates [48] to assess the statistical significance of our findings. Using our
approach, we analyzed intracranial EEG data that were recorded with 48 electrode
contacts for approximately five days (patient B in [49]). During this time period, the
patient had 10 typical seizures that originated from the left medial temporal lobe.
We calculated R1 and R2 using a moving-window technique with data windows of
size N = 50 000 data points, and the windows overlapped by 50%. We discarded any
seizure activity and the postictal periods (30 minutes duration) and evaluated the
amplitude distributions of R1 and R2 for preictal and interictal periods using receiver
operating characteristics (ROC). In Figure 14.5 we show the amplitude distributions
of R1 and R2 for the preictal and interictal periods from an EEG channel that exhib-
ited the highest values of the area under the ROC curve (0.77 for R1 and 0.73 for R2).
This channel was located close to the epileptic focus. Both measures attained higher
values during the preictal periods. However, when testing for statistical significance
with 19 seizure times surrogates only the result for R1 turned out to be significant.

Summarizing this section, our findings indicate that the approach presented
here can be regarded as an alternative to characterize complex brain dynamics. We
addressed the issue of a spatial-temporal characterization of the epileptic process
and focused on an interictal focus localization and on possibilities to identify a
preictal state. We observed that particularly measures derived from the second
Kramers–Moyal coefficient D(2) appear to capture more relevant information for
a spatial characterization than measures derived from the first coefficient D(1).
Interpreting D(2) as the diffusion coefficient of the Fokker–Planck equation one
may conclude that additional and relevant information about the epileptic process
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Fig. 14.4 Values of R1 (a) and R2 (c) calcu-
lated from a multi-channel EEG recording
(approx. 21 hours) from a patient suffering
from seizures of right medial temporal lobe
origin. For abbreviations of recording sites
see Figure 14.1. Temporal averages of R1

(b) and R2 (d) for all recording sites (same
ordinates as in (a) and (c)). R1 and R2 were
calculated using a moving-window technique
with data windows of size N = 50 000 data
points, and the windows overlapped by 50%.

can be achieved when taking into account stochastic influences on brain dynamics.
The better performance of R1 for characterizing the seizure generating process
probably indicates that also measures derived from the first Kramers–Moyal coef-
ficient can yield valuable information. This preliminary finding, however, requires
validation with data from a larger patient group.
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Fig. 14.5 Amplitude distributions of R1 (a) and R2 (b) for
preictal and interictal periods. The duration of the assumed
preictal period was 240 minutes. Data from an EEG channel
close to the epileptic focus.

14.4
Conclusions

We have presented a time series analysis method that is based on the reconstruction
of a Fokker–Planck equation from EEG recordings for an improved characterization
of the epileptic process. We have derived stochastic qualifiers of epileptic brain
dynamics that allowed a more comprehensive spatial characterization of the
epileptic process during the interictal state, particularly when focusing on the
stochastic part of the dynamics. Preliminary findings also indicate that the method
can be regarded as helpful in identifying dynamical aspects of seizure precursors
that are not fully captured by techniques preferentially focusing on deterministic
structures. We expect that our approach, along with further improvements, can yield
valuable information for diagnostic purposes and can advance our understanding
of the complicated dynamical system epileptic brain.
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15
Bivariate and Multivariate Time Series Analysis Techniques
and their Potential Impact for Seizure Prediction
Hannes Osterhage, Stephan Bialonski, Matthäus Staniek, Kaspar Schindler, Tobias
Wagner, Christian E. Elger, Klaus Lehnertz1)

15.1
Introduction

The ambition to predict epileptic seizures has been one of the main driving
forces in the analysis of electroencephalographic (EEG) time series since the
1970s (see [1–7] for comprehensive overviews). In the following years, univariate
methods from linear time series analysis were predominantly applied in this field of
research, particularly analysis techniques that exploit the spectral properties [8, 9]
or occurrence rates of epileptic spikes in the EEG [10, 11]. With the beginning of
the 1990s, methods from nonlinear time series analysis have increasingly been
used. Initially, univariate measures such as the largest Lyapunov exponent [12,13],
the correlation dimension [14–16], the correlation density [17], and the dynamical
similarity [18–21] were used to identify preictal states in EEG time series. The
ongoing developments in the field, together with the increasing computational
power, soon resulted in the introduction of bivariate measures, which aim at the
investigation of relationships between pairs of recording sites. Prominent examples
are the difference between the largest Lyapunov exponents calculated from two
time series [22] and different measures for synchronization [23–25].

With N recording sites, the number of non-redundant combinations is equal to
N(N − 1)/2, which may result in the comprehensive analysis of the available data
being computationally demanding. Moreover, this often high number of possible
combinations renders a statistical validation of any retrospectively optimized pre-
diction algorithm indispensable [26–28]. Despite the fact that such a validation
is very exigent for those techniques, recent studies [29–33] have revealed that
bivariate measures exhibit the highest predictive performance among the different
techniques that have been applied. Nevertheless, the steady increase in spatial reso-
lution (and, correspondingly, the increase in the number of recording sites) not only

1) This work was supported by the Deutsche
Forschungsgemeinschaft (SFB-TR3 sub-
project A2 and LE-660/4-1).
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renders the statistical evaluation of bivariate algorithms more and more difficult,
but also results in EEG signals that are highly correlated and, consequently, highly
redundant. Thus, one of the major challenges in the future will be the extraction of
relevant information from multivariate recordings. This can be achieved through
multivariate time series analysis techniques. As in the bivariate case, multivariate
techniques aim at investigating relationships between different recording sites.
However, these relationships are characterized through a simultaneous analysis of
all recording sites, in contrast to the pairwise analysis in the bivariate case. In light
of the hypothesis of an epileptic network [34, 35], which enters pathological states
and generates seizure activity, multivariate time series analysis techniques aiming
at the identification and characterization of interaction networks become more and
more attractive.

In the following, we present exemplary bivariate and multivariate measures for
the quantification of interactions between dynamical (sub)-systems. The bivariate
measures are derived from two different frameworks, namely, the synchronization
of dynamical systems [36], and from information theoretical considerations [37].
We start with measures of synchronization that are derived from the concepts
of phase synchronization [38] and of generalized synchronization [39]. We then
present the transfer entropy [40] which is a modified version of the mutual
information for conditional probabilities and thus can detect the directed exchange
of information between two systems. Exemplary applications to EEG time series
using some of these bivariate techniques will then be presented. Finally we give
an overview about recently introduced multivariate time series analysis techniques
which are based on two frameworks, namely Random Matrix Theory [41, 42] and
Network Theory [43, 44].

15.2
Bivariate Time Series Analysis Techniques

15.2.1
Measures of Synchronization

When studying two interacting dynamical (sub-)systems, the investigation focuses
on two aspects, namely, the strength and the direction of the interactions. In the field
of seizure prediction, studies have so far been limited to the use of measures of
the strength [23–25]. However, potential future developments are likely to involve
directional measures. For this reason, this section includes a representative choice
of bivariate measures for the strength of interaction that has already been used
in different studies. In addition, we present exemplary directional approaches for
each of these measures. From the literature, four different frameworks for the
mathematical description of synchronization phenomena are well known. In the
most simple case of complete synchronization the systems’ states become identical.
A natural extension of this case, lag synchronization [45], is reached when the
states coincide if one of the systems is shifted in time. In terms of time series
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analysis, both synchronization forms can be regarded as special cases of the more
general concepts of phase synchronization [38] and generalized synchronization [39].
In the former case, the difference between the phases (which have to be defined
appropriately) of both systems are bounded, while in the latter case, the states of
the systems can be mapped onto each other through some function. For these we
present exemplary measures for the strength and direction of interactions.

15.2.2
Phase Synchronization

The investigation of both the strength and the direction of interaction requires an

extraction of phase time series
(
φ

(x)
j

)
j=1...N

and
(
φ

(y)
j

)
j=1...N

from the measured

time series
(
x

(
jδt

) = xj
)

j=1...N and
(
y
(
jδt

) = yj
)

j=1...N . Depending on the properties
of the signals as well as on the purpose of the investigation, several phase
extraction techniques are available. These can be divided into adaptive and selective
techniques. Phases obtained from adaptive techniques such as the analytical signal
approach [46, 47] always relate to the predominant frequency in the Fourier
spectrum [48]. In contrast, frequency selective techniques (e.g., based on the
wavelet transform) allow investigations of interactions in specific frequency bands.
For an overview of the different techniques we refer to [49].

In the noise-free case, phase-synchronized systems are related through the
phase-locking-condition

αφ
(x)
j − βφ

(y)
j = const, α, β ∈ N. (15.1)

We here restrict ourselves to the case α = β = 1; more general cases can be
treated in an almost identical manner. A well known measure for the strength of
synchronization between the systems is the mean phase coherence R (X |Y) [24]:

R (X |Y) = 1
N

∣∣∣∣∣∣
N∑

j=1

exp i
(
φ

(x)
j − φ

(y)
j

)∣∣∣∣∣∣ . (15.2)

In the case of independent systems, the phase differences are randomly distributed
on the unit circle, yielding R (X |Y) → 0 for N → ∞, while in the synchronized
case, the phase-locking condition implies that the phase differences are peaked
around some constant value, yielding R (X |Y) → 1.

As a measure for directionality using phase time series, we consider the evolution
map approach proposed in [50]. The phase increments �

(x,y)
j = φ

(x,y)
j+τ − φ

(x,y)
j over

some fixed time τ are assumed to be generated by two-dimensional noisy maps

�
(x,y)
j = F

(x,y)
[
φ

(x)
j , φ(y)

j

]
+ η(x,y), (15.3)

with the random terms η(x,y) representing noisy perturbations. The maps are then
approximated using finite Fourier series

F(x,y) (φ(x), φ(y)) =
∑
k,l

A
(x,y)
k,l exp

(
ikφ(x,y) + ilφ(y,x)). (15.4)



192 15 Potential Impact for Seizure Prediction

Solving the linear least squares problem F ≈ F provides estimates for the
deterministic parts of the maps. The accuracy of approximation is determined
by the order of the Fourier series (in both dimensions), e.g., by the choice of the
pairs (k, l), which have to be selected a priori. On the one hand, high-order terms
increase the quality of the fit. On the other hand, they lead to an approximation
of the non-deterministic parts of the dynamics, which is not desired. It should be
pointed out that the choice of the optimal set of pairs (k, l) is non-trivial and highly
application-specific.

Given the function F(x,y), the mutual influence of the systems can be quantified
as

(
c(x,y))2 =

∫ 2π

0

∫ 2π

0

(
∂F(x,y)

∂φ(y,x)

)2

dφ(x)dφ(y) (15.5)

since the Fourier series are 2π-periodic, by definition. Analytical integration [51]
yields

c(x,y) =
√∑

k,l

l2A
(x,y)
k,l , (15.6)

and the directionality of the coupling can be quantified by

d (X |Y) = c(y) − c(x)

c(y) + c(x)
, (15.7)

where d (X |Y) ∈ [−1, 1] with properties

d (X |Y)




> 0 X drives Y

= 0 symmetric bidirectional coupling

< 0 Y drives X.

(15.8)

Note, that a vanishing coupling between the systems is a special case of symmetric
bidirectional coupling.

15.2.3
Generalized Synchronization

The concept of generalized synchronization applies in the state spaces of the
investigated systems, which initially have to be reconstructed from time series
using, e.g., delay embedding [52]:

�xj = (
xj, xj+T , . . . , xj+(m−1)T

)
,

�yj = (
yj, yj+T , . . . , yj+(m−1)T

)
, j = 1, . . . , M = N − (m − 1)T. (15.9)

The embedding dimension m and the time delay T have to be chosen appropriately.
A reliable unfolding of the dynamics of a system with dimension d is given if
m > 2d [53,54]. While the topological properties of the reconstructed attractors are
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independent of the time delay, a proper detection of the coupling direction [55]
between dynamical systems requires an appropriate choice of T . This relates to the
fact that the unfolding of the attractor is optimal with linearly independent vector
components. For this reason, the decorrelation time of the system or the delay
corresponding to the first minimum of the time delayed mutual information [56]
often turns out to be a good choice.

Generalized synchronization is now said to occur if a function F exists that maps
the states of the systems onto each other:

�y = F (�x)
. (15.10)

While F was initially introduced as being completely arbitrary [57], the concept
of mutual neighborhoods in state space, which is related to the idea of F being
smooth, turned out to be appropriate when investigating interactions between
the systems in their respective state spaces. Measures derived from this concepts
mostly exploit the mutual neighborhoods either directly [58, 59] or by predicting
the future states of the systems [60]. The prediction of future states of a system
with the inclusion of the knowledge about the interacting second systems is closely
related to the concept of Granger causality [61]. Other methods, which also rely on
mutual neighborhoods, use joint recurrences for the detection of strength [62, 63]
and direction [64] of interactions.

We here resort to the concept of nonlinear interdependence [23], which does not
require the existence of a function F. Consider two state space vectors �xj and
�yj at time j. Let the r nearest neighbors of �xj be denoted by �xsj(i), i = 1 . . . r. The
systems are considered to be interdependent if, for any j, the mean squared distance
between �yj and its r conditioned neighbors �ysj(i), i = 1 . . . r is small compared to the
mean squared distance

Qr
j (Y) = 1

M − 1

∑
k�=j

(�yj − �yk
)2

(15.11)

between �yj and all remaining state space vectors. Given the mean squared distance
between �yj and its conditioned neighbors

Qr
j (X |Y) = 1

r

r∑
k=1

(
�yj − �ysj(i)

)2
(15.12)

one now defines

Hr (X |Y) = 1

M

M∑
k=1

log

(
Qr

j (Y)

Qr
j (X |Y)

)
(15.13)

as a measure of interdependence. Hr (Y|X) is defined in complete analogy. Mea-
sures for strength and direction of interaction are defined as:

H+
r (X |Y) = H+

r (Y|X) = Hr (X |Y) + Hr (Y|X)

2 (15.14)

H−
r (X |Y) = −H−

r (Y|X) = Hr (X |Y) − Hr (Y|X)

2
.
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As a measure for the strength of interaction, H+
r (X |Y) ∈ R

+
0 and increases with an

increasing coupling between the systems. The directional measure H−
r (X |Y) ∈ R

attains positive values when X is driving Y , and negative values in the opposite case.

15.3
Information Theoretic Measures

Basic principles of information theory and the concept of entropy were derived
almost 60 years ago [37, 65]. Entropy is a measure quantifying the order of a time
series by mapping a probability function onto some scalar. Suppose the state xj of
process X is occupied with uncertainty log 1/p(xj). The Shannon entropy is then
defined as the average over all possible states:

S(X ) =
∑

j

p(xj) log
1

p(xj)
= −

∑
j

p(xj) log p(xj). (15.15)

In time series analysis, the Shannon entropy can be estimated via a box counting
approach to quantify the average information gained by a measurement of X .
A partition size θ is chosen and the data xj are discretized into symbols depending
on what bin of size θ they fall into. Up to a factor, the Shannon entropy is the
only functional, which is continuous in the p(xj), additive, and increases with the
number of possible symbols (size of alphabet A) [66].

Since p(xj) is measured from a signal that is generated by the process X ,
it is an estimate of the true distribution q(xj) only, which has to be assumed
a priori. Averaging the difference in uncertainty, log 1/q(xj) − log 1/p(xj), yields
the Kullback–Leibler entropy [67] as a measure of the difference between two
probability distributions

K(X ) =
∑
xj∈A

p(xj) log
p(xj)

q(xj)
. (15.16)

If we observe two processes X and Y that we assume to be independent, we can set

q(xj, yk) = p(xj)p(yk). (15.17)

The Kullback–Leibler entropy (15.16) then reads

M(X |Y) =
∑
j,k

p(xj, yk) log
p(xj, yk)

p(xj)p(yk)
. (15.18)

M(X |Y) quantifies the deviation from the assumption that the processes X and Y
are independent and is thus called mutual information [68,69]. In order to analyze
time-delayed dependencies, j = k − T can be considered, with T denoting the time
lag [70]. The mutual information is symmetric and zero for independent processes
and can be expressed through Shannon entropies:

M(X |Y) = S(X ) + S(Y) − S(X , Y). (15.19)



15.4 Exemplary Applications 195

The analysis of the dynamical structure of a process requires the consideration of
transition probabilities p(xj+1|x(l)

j ), where p denotes the probability of a transition
into a new state xj+1 given the last l states of X . If xj+1 depends on the l past states
of X , but is independent of the last m states of Y , then

p(xj+1|x(l)
j , y(m)

k ) = p(xj+1|x(l)
j ). (15.20)

Transfer entropy [40, 71] quantifies the incorrectness of this assumption and is
formulated as the Kullback–Leibler entropy between p(xj+1|x(l)

j , y(m)
k ) and p(xj+1|x(l)

j ):

T (Y|X) =
∑

xj+1,x
(l)
j ,y

(m)
k

p(xj+1, x(l)
j , y(m)

k )
p(xj+1|x(l)

j , y(m)
k )

p(xj+1|x(l)
j )

. (15.21)

Thus, transfer entropy specifies the deviation from the generalized Markov property
(15.20). T (Y|X) quantifies the degree of dependence of X on Y , and vice versa. In
order to quantify the preferred direction of flow, a directionality index based on the
transfer entropy can be introduced as

T̂ (X |Y) = T (X |Y) − T (Y|X)

T (X |Y) + T (Y|X)
. (15.22)

T̂ (X |Y) is expected to vary between 1 for unidirectional coupling with X as the
driver and −1 for Y driving X . For symmetric bidirectional coupling T̂(X |Y) = 0
is expected. The transfer entropy is an antisymmetric measure, i.e., T̂ (X |Y) =
−T̂ (Y|X).

15.4
Exemplary Applications

The mean phase coherence R (X |Y) has repeatedly been applied to EEG time series
as a potential measure for epileptic seizure prediction [72]. We here present an
application where this measure was used to detect synchronization in different
frequency bands in long-term multichannel intracranial EEG recordings from a
patient suffering from left frontal lobe epilepsy. The EEG was sampled over a period
of one week at 200 Hz, during which the patient had four seizures. The mean phase
coherence was calculated for consecutive, non-overlapping segments of 4096 data
points (corresponding to 20.48 s). In addition to a phase estimation using the
Hilbert transform, we here filtered the EEG data using a morlet wavelet adapted
to the frequency bands 0.5–4 Hz (δ-band), 4–8 Hz (θ-band), 8–13 Hz (α-band),
13–20 Hz (β1-band), and 20–30 Hz (β2-band) at full width half maximum.

In order to investigate the ability of the broad-band and frequency-selective mean
phase coherence to detect changes predictive of an impending seizure, we here
assumed a preictal period of four hours (cf. [29]). In the upper part of Figure 15.1 we
present an exemplary time course of the mean phase coherence for EEG data filtered
in the β2-band. In the middle and lower part of Figure 15.1 and in Figure 15.2 we
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Fig. 15.1 (a) Exemplary time course of the
mean phase coherence Rβ2 calculated from
a combination of electrodes located in brain
regions distant to seizure onset zone. Dis-
continuities in the time profile are due to
recording gaps. Seizure onsets are marked
by vertical lines, and the assumed preic-
tal states are plotted with dashed lines.
(b) Distributions of interictal (solid lines)
and preictal (dashed lines) of the mean

phase coherence obtained from estimating
the phases using the Hilbert transform (up-
per plots) and from estimating band-limited
phases (δ-band) using the wavelet trans-
form (lower plots). Diagrams shown on the
left refer to the channel combination which
exhibited the most pronounced preictal de-
crease. Diagrams shown on the right refer to
the channel combination that exhibited the
most pronounced preictal increase.

show the distributions of values of the mean phase coherence for interictal and
preictal periods assuming either a preictal increase or decrease in this measure.
We here restrict ourselves to recording sites that exhibited the most pronounced
differentiability (using receiver-operating-characteristic statistics) between interictal
and preictal periods. For this patient, the mean phase coherence calculated from
EEG data filtered in the upper frequency bands (α- and β-bands) allowed a better
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Fig. 15.2 Continuation of Figure 15.1. Top
to bottom: Distributions of interictal (solid
lines) and preictal (dashed lines) of the
mean phase coherence obtained from es-
timating band-limited phases (θ-, α-, β1-,
and β2-bands) using the wavelet transform.

Diagrams shown on the left refer to the
channel combination which exhibited the
most pronounced preictal decrease. Dia-
grams shown on the right refer to the chan-
nel combination which exhibited the most
pronounced preictal increase.
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discrimination between interictal and preictal periods than phase coherence values
from the lower frequency bands and from broad-band signals (cf. [73]). We
observed both a preictal increase and decrease. However, these phenomena were
not confined to a specific brain region but could be observed in the interactions
between different neocortical structures covered by a 64-contact grid electrode.

As an example for the detection of directionality in EEG time series, we here
present an application of the transfer entropy to long-term, multichannel EEG
recordings from a patient suffering from right medial temporal lobe epilepsy.
We here restrict ourselves to the analysis of spatial interactions between different
brain regions during the interictal state (we excluded data that were recorded
less than four hours prior to a seizure, during a seizure and less than one
hour after any seizure). The EEG was sampled at 200 Hz and recorded via
intrahippocampal depth electrodes, each equipped with 10 cylindrical contacts
(diameter: 2.5 mm, intercontact distance: 4 mm) (cf. Figure 15.3a). T̂ (X |Y) was
calculated for consecutive, non-overlapping segments of 4096 data points for all
possible combinations of electrode contacts.

Figure 15.3(b) shows the temporal average of T̂ (X |Y) for each combination of
electrode contacts in the form of a directionality matrix M(T̂). M(T̂) is antisymmetric
since T̂ (X |Y) = −T̂ (Y|X). Matrix entries M(T̂)ij attain positive values if the system
corresponding to the row index i drives the system corresponding to the column
index j. The structures recorded at the seventh and eighth electrode contacts in
the right hemisphere (TR07,TR08) appear to drive both the left and right medial
temporal regions of the brain. Visual inspection of the raw EEG data including
seizure activity by a clinical expert confirmed that initial signs of seizure activity were
always restricted to electrode contacts (TR06,TR07,TR08,TR09). Apparently, the
seizure onset zone is driving remote brain areas during the interictal state (cf. [74]).
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Fig. 15.3 (a) Implantation scheme for intrahippocampal elec-
trodes. (b) Directionality matrix M(T̂) obtained from the
transfer entropy. Matrix entries are color coded and rep-
resent the temporal average of T̂ for each combination of
electrode contacts. (Please find a color version of this figure
on the color plates.)
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15.5
Multivariate Time Series Analysis Techniques

While, in the past, epilepsy has mainly been studied using a reductionistic
approach on the level of ion channels, single neurons, or small neuronal net-
works in vitro, the present view is that epileptic seizures are produced by the
collective electrical activity in large, i.e., spatially extended and interacting neu-
ronal networks [34, 35, 75]. Furthermore, the occurrence of epileptic seizures is
often related to specific behavioral states, which affect the global state of the
brain. Improving our understanding of the pathophysiological basis of epilepsy
thus requires an in vivo assessment of the changes of the collective spatio-
temporal neuronal activity before seizures, at the onset of seizures, during seizure
propagation, and when seizures terminate. Two powerful approaches for the
quantitative assessment of large systems of interacting units are Random Matrix
Theory and Network (or Graph) Theory, which will be briefly discussed in the
following.

15.5.1
Approaches Based on Random Matrix Theory

In the 20th century the development of Random Matrix Theory (RMT) was initiated
by Wigner in order to describe statistical properties of many-body quantum systems,
which represent complex dynamical systems with a large number of degrees of
freedom. Together with Dyson, Mehta, and others RMT was further developed,
extended, and successfully applied in various physical contexts, e.g., to describe
statistical properties of atomic nuclei, atoms, and complex molecules (see [41, 42]
for an overview).

Recently, concepts from RMT have been adopted in the context of multivariate
time series analysis. Matrices arise naturally when computing a bivariate measure
of signal interdependence for all pairs of multi-channel time series. A comparison of
spectral properties of these empirically obtained matrices with spectral properties of
an appropriate ensemble of random matrices can help in distinguishing ‘real’ from
random correlations and thus can enable one to extract the relevant information
hidden in a multivariate dataset. As prominent examples for RMT-based measures
we mention the spectral density ρ, the nearest-neighbor distribution Pnn, and the number
variance �2, which are based on the eigenvalue spectrum and are typically compared
with their analytical counterparts for random matrix ensembles. Deviations between
empirically obtained matrix ensembles and random matrix ensembles are usually
interpreted as evidence for non-random correlations. For a detailed introduction to
RMT and discussion of some of its measures in the context of time series analysis
we refer the reader to Chapter 16 in this book. In the following, we give a brief
overview of applications of RMT-based time series analysis techniques to human
EEG and MEG data.

Kwapien and co-workers [76] studied sequences of evoked magnetic fields from
the human auditory cortex during the delivery of acoustic stimuli. Correlation
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matrices were constructed by treating the time series of each single trial as a
separate system. The authors stated that the observed nearest-neighbor distribution
Pnn, which only accounts for correlations between neighboring eigenvalues, were
largely consistent with the nearest-neighbor distribution of the Gaussian Orthogonal
Ensemble (GOE) of random matrices but deviated for larger eigenvalue spacings.
This supported earlier findings indicating the presence of a background state
(associated with a GOE-like behavior here), which is slightly perturbed by the
sound stimuli. The authors hypothesized that the observed separation of the
eigenvalue spectrum into the background of ‘noise’ eigenvalues and a group of
eigenstates with large eigenvalues possibly reflects different anatomical routes
from the cochlea to the auditory cortex.

Seba [77] investigated scalp EEG data recorded from 90 healthy subjects under
resting conditions and under visual stimulation. After artifact removal, the equal
time (=zero-lag) correlation matrices were computed from non-overlapping moving
windows and ρ, Pnn, and the number variance �2, which takes into account
simultaneous correlations between a group of subsequent eigenvalues, were studied
and compared to the predictions made by RMT. The author reported that ρ and Pnn

did not change during visual stimulations and, in addition, appeared to be subject-
independent and in agreement with RMT predictions, thereby reflecting generic
features of correlation matrices obtained from human EEG data. In contrast, �2

was found to deviate from RMT predictions when subjects were visually stimulated,
which was attributed to altered correlations between the visual and other cortical
areas.

In order to detect phase-shape correlations in multivariate time series, Müller and
co-workers [78] proposed a method based on the eigenvalues and eigenvectors of the
equal time correlation matrix. The authors investigated the temporal evolution of
eigenvalues obtained from correlation matrices of time series generated by model
systems. They reported that the increase of phase-shape correlations in a number
of time series caused a level repulsion of a corresponding number of eigenstates.
Level repulsion is a combined increase and decrease of different eigenvalues, such
that their sum remains constant. In addition, the authors analyzed a scalp EEG
recording from a patient suffering from absence epilepsy. Using a moving window
technique, equal time correlation matrices were computed, and the temporal
evolution of their largest and smallest eigenvalues were investigated. At the onset
of the absence seizure a sudden increase of the largest eigenvalue and a decrease
of almost the entire rest of the spectrum was observed, which was interpreted
as a possible indication for a phase transition (see [78] and references therein).
Extending this analysis, Baier and colleagues [79] studied the temporal evolution
of eigenvalues obtained from scalp EEG recordings of five patients with absence
epilepsy. Investigating the transition from ‘normal’ background activity to seizures,
the authors observed significant changes of the eigenvalues a few seconds prior
to the occurrence of spike-wave complexes. The smallest eigenvalue increased,
which was interpreted as a loss of correlation confined to a small number of
electrodes. After the onset of the spike-wave complexes the largest eigenvalues
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were increased while the smallest eigenvalues were decreased, thereby reflecting
an overall increase of cross-correlation during the seizures.

Schindler and co-workers [80] assessed the temporal evolution of the correlation
structure in the course of 100 focal onset seizures from 60 patients recorded
by intracranial, multi-channel EEG by computing the time-resolved eigenvalue
spectrum of the equal time correlation matrix of a moving window. The results
demonstrated statistically significant changes in the correlation structure. Specifi-
cally, the changes in the eigenvalue spectrum indicated that the zero-lag correlation
of multi-channel EEG either remained approximately unchanged or – especially
in the case of secondary generalization – even decreased during the first half of
the seizures. Then correlation gradually increased again before the seizures termi-
nated. This development was qualitatively independent of the anatomical location
of the seizure onset zone and may thus be a generic property of focal onset seizures.
It was suggested that the decorrelation of EEG activity might be due to different
propagation delays of locally synchronous ictal discharges from the seizure onset
zone to other brain areas. Furthermore, it was proposed that the increase in the
correlation during the second half of the seizures could be causally related to
seizure termination. This hypothesis was further tested in another study [81],
by investigating the correlation dynamics during status epilepticus, i.e., epileptic
seizures that last more than five minutes [82]. It was found that correlation was
relatively low during ongoing status epilepticus and only persistently increased
toward its end. Interestingly, the increase of correlation often followed the applica-
tion of drugs, indicating that RMT-based methods might be helpful to also assess
pharmacological effects on a network level. The findings of this study thus support
the hypothesis that increasing correlation of neuronal activity may be considered
as an emergent self-regulatory mechanism for seizure termination, which could
also further our knowledge about seizure initiation. They furthermore challenge
the traditional concept that increasing neuronal synchronization during epileptic
seizures is always pathological and should be suppressed.

Carrying over concepts developed in [78] Allefeld and co-workers proposed a
method to detect synchronization clusters in multivariate time series [83]. Based
on the observation that the eigenvectors that are involved strongly in the level
repulsion process contain information about the correlated groups of time series,
the authors defined the participation index p. This index is determined by the
eigenvalues and eigenvectors of a synchronization matrix, which contains the
mean phase coherence (see Section 15.2.1) between each channel combination
as its entries. Bialonski and Lehnertz [84] explored the limitations of this index
by analyzing time series generated by coupled model systems. By applying the
method to long-term intracranial EEG recordings from patients with focal epilepsy,
they observed synchronization clusters, whose spatial extent and location coincided
with the seizure onset zone as determined by the presurgical workup and the
post-operative outcome. In addition, the method was shown to be sensitive to
short-term changes of synchronization phenomena, which could be associated
with physiological processes (language processing) in the brain.



202 15 Potential Impact for Seizure Prediction

15.5.2
Approaches Based on Network Theory

Network theory has received rapidly growing interest from various fields of science
during the last decade (see [43, 44] for an overview). Inspired by this theory,
multivariate time series analysis techniques have been developed to gain more
insights into dependencies between structure and dynamics of complex systems.
A network can be formally described by a graph consisting of a set of nodes (vertices)
and a set of links (edges) connecting them. Unweighted networks are characterized by
links that only can exist (1) or not exist (0) between nodes (binary network). If links
carry a numerical value (indicating the strength of the connection), the network
is called a weighted network. Unlike links of undirected networks, links of directed
networks describe connections between nodes that are associated with a direction.
A network can be represented by an adjacency matrix A, where the entries ajk

indicate the strength (or existence) of a link from node j to node k. Thus, undirected
networks are described by symmetric adjacency matrices. By interpreting bivariate
time series analysis techniques as measures of link strengths within an interaction
network, the analysis can be carried over into the domain of network theory, where
a plethora of methods can be applied to further investigate the obtained structure.
In the following, we report on measures that have been widely used in the literature
to distinguish between different classes of networks.

The average shortest path length L of a network quantifies how efficiently infor-
mation can propagate over the network. Since L relies on the overall integrity of
the network it characterizes the network on a global scale. Let N be the number of
nodes and let djk denote the shortest path length between nodes j and k, which cor-
responds to the smallest number of links needed to travel from j to k in unweighted
networks. Then L can be defined by

L = 1

N(N − 1)

∑
j �=k

djk. (15.23)

In the case of disconnected components in the network L can diverge, since for
some j and k no path exists and hence djk becomes infinite. Other measures have
been proposed to circumvent this problem, e.g.,

L̃ = E−1 =

 1

N(N − 1)

∑
j �=k

1
djk




−1

, (15.24)

where E is called the efficiency and considers the harmonic mean of the shortest
path lengths.

The clustering coefficient C [85] quantifies how well connected the nodes in a
network are on a local scale. Let kj be the number of nodes that are connected to
node j (neighbors of j). For unweighted networks, C is then defined as
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C = 1
N

N∑
j=1

Cj = 1
N

N∑
j=1




∑
k,m

ajkakmamj

kj(kj − 1)


 , (15.25)

where Cj denotes the fraction of existing links among all possible links between
the neighbors of node j. If a node with highly connected neighbors is removed, the
information can most likely still travel over the network without interference. Thus
C has sometimes been interpreted as a measure of the robustness of the network
against random failures. Note that alternative measures for weighted networks
have been proposed (e.g. see [43] and references therein).

Based on L and C, Watts and Strogatz [85] distinguished between three classes
of networks, namely regular networks (e.g., lattices), small-world networks, and
random networks, whose links are randomly assigned to nodes. Whereas regular
networks are characterized by high clustering coefficients and long average shortest
path lengths, random networks display short path lengths and low clustering
coefficients. Exploring the regime between both network types the authors used a
random rewiring procedure to generate artificial networks with varying degree p
of randomness (starting from p = 0 (regular network) to p = 1 (random network)).
They found that for a slight increase in p the clustering coefficient C remained
almost constant, while L decreased rapidly. Networks of this regime, where a high
C and a low L prevail, are called small-world networks. Because of these features,
they can efficiently transfer information, while at the same time being quite robust
against random errors.

Measures motivated by network theory have found various applications in
different sciences. In the following, we briefly summarize research done in the
context of epilepsy. For a general overview about network analyses of the brain we
refer the reader to two recently published reviews [86, 87].

Ponten and colleagues [88] analyzed intracranial EEG recordings from seven
patients suffering from medial temporal lobe epilepsy. The authors used the syn-
chronization likelihood index [62] to detect interdependencies between pairs of
channels for different frequency bands and to construct networks. The clustering
coefficient C and a differently normalized version of L̃ were computed for the
obtained networks as well as for random networks with the same degree distri-
bution (Cr and L̃r). The authors reported that the mean values C/Cr and L̃/L̃r of
all patients increased during and after seizures when compared to the interictal
period. This suggests a ‘movement’ from random interictal to small-world like and
therefore more regular ictal configurations. In this context, we mention a case
study by Wu and co-workers [89] who analyzed an intracranial EEG recording of ten
minutes duration from an epilepsy patient before and during a seizure. Bispectral
analysis techniques were applied to detect interdependencies between channels,
and adjacency matrices of unweighted networks were obtained in the way described
above. The authors reported that the small-world property (high C values, low L
values) was more pronounced in networks obtained during the seizure than in the
seizure-free time interval, which supports the findings by Ponten and colleagues.
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Furthermore, recent theoretical studies [90] indicate that random networks are
more synchronizable than small-world networks. These results might indicate that
epilepsy comes along with interictal networks that possess a random structure and
thus a lower threshold for seizure generation [86].

15.6
Conclusions

We have presented bivariate and multivariate EEG analysis techniques and have
discussed their potential impact for seizure prediction. Research over recent
years has demonstrated in particular that bivariate EEG analysis techniques – ones
which allow one to estimate the strength of interactions between different brain
regions – can be regarded as superior for the detection of long-lasting preic-
tal phenomena. Nevertheless, the performance of seizure prediction approaches
based on bivariate EEG analysis techniques cannot yet be regarded as suffi-
cient for clinical applications. Our preliminary findings obtained from analyses
involving different methods that allow one to measure coupling asymmetries
and thus the direction of interactions indicate that these approaches can be
regarded as helpful in expanding our knowledge of how seizures are gener-
ated in the brain and of the intermittent dysfunctioning of the brain between
seizures.

Multivariate EEG analysis techniques are attractive because of their ability to
simultaneously assess and quantify the collective dynamics of the epileptic brain.
These techniques might help to gain deeper insights into the components of
the epileptic network that are necessary for clinical events to occur and into the
temporal and spatial distribution of seizure precursors. The multitude of new
insights that can already be achieved within a short time period after introducing
these techniques clearly demonstrates the power of these concepts. Multivariate
techniques form a natural generalization of bivariate techniques, and further exten-
sions and new developments can be expected within the near future. Given these
developments that are also fertilized by research into the prediction of extreme
events arising in other scientific areas, we expect increasing progress in the field
of seizure prediction.
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16
A Multivariate Approach to Correlation Analysis Based
on Random Matrix Theory

Markus Müller, Gerold Baier, Christian Rummel, Kaspar Schindler, Ulrich Stephani

16.1
Introduction

In this contribution we present a multivariate method for the analysis of inter-
relations between data channels of an M-dimensional recording. We describe in
detail how and in which sense genuine multivariate features of the data set are
extracted and illustrate the performance of the method with the help of numerical
examples. As tools known from Random Matrix Theory are used, a brief overview
of the origin of this field is given and some technical aspects of the calculation
of RMT-measures are discussed. Finally we discuss several examples where this
method has been applied successfully to the analysis of electroencephalographic
recordings of epileptic patients.

For the analysis of complex systems like the human brain the development and
application of sophisticated tools of time series analysis is indispensable. During
the last decade, the development and application of nonlinear measures became
particularly popular, mostly because it is supposed that the underlying mechanism
generating EEG signals is nonlinear or even chaotic [1]. Hence a multitude
of different techniques such as estimating the largest Lyapunov exponents [2],
the correlation dimension [3], generalized correlations via Mutual Information
[4], nonlinear regression [5] or synchronization measures [6] have been applied.
All these methods are uni- or bivariate evaluating properties of single or the
interplay of pairs of data channels of a multivariate EEG recording. Although
spectacular results, in particular in the field of seizure prediction, were published
[3, 7, 8] a certain disenchantment for nonlinear techniques appeared. Comparing
the performance of different linear and nonlinear measures within controlled
testframes, it turned out that simple linear measures like, e.g., the Pearson
correlation coefficient, do not perform worse or even better than sophisticated
nonlinear techniques [9, 10]. In these studies, the sensitivity of a measure in
detecting the (nonlinear and linear) coupling between units has been tested. For
the particular application of characterizing preseizure dynamics, linear as well as
nonlinear measures have been applied to EEG recordings in [11, 12]. Also there
the conclusion has been drawn that linear approaches are highly competitive
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with fashionable nonlinear ones, and that bivariate techniques in general deliver
more favorable results than do univariate approaches. However, if one likes to
detect relationships between m > 2 data channels and to quantify the strength
of interrelation, a multivariate approach seems most promising. This conjecture
has its foundation in the typical network structure of mammalian brains where
interconnections lead to more complex structures than given by the sum of bivariate
relations.

Motivated by these findings we present in this work a linear but multivariate
approach based on the zero-lag correlation matrix and techniques known from
Random Matrix Theory (RMT). RMT tools have been successfully applied to
time series stemming from stock markets [13], electroencephalographic as well a
magnetoencephalographic recordings [14, 15], climate data [16] and data derived
from the internet traffic [17]. However, we proceed differently in several aspects
from these authors in order to increase the sensitivity of the approach in detecting
and characterizing spatio-temporal correlation patterns. Although in the present
contribution the Pearson coefficient is used as a basic measure in order to
construct an interdependence matrix, we emphasize that also nonlinear measures
like mutual information could be used instead (work in this direction is underway).
In this contribution we describe in detail the method and illustrate its performance
with the help of test systems. We will give evidence, that although the Pearson
coefficient is a bivariate measure, we will be able to estimate the interrelation
between m data channels, for any m ≥ 2. Finally, we report in the last two chapters
successful applications of our approach to EEG data of epilepsy patients. In
two, recently published contributions [18, 19] the evolution of the spatio-temporal
correlation pattern during focal onset seizures as well as status epilepticus is
described while in a third publication [20] also the transition towards spontaneous
epileptiform activity is characterized for the case of primary generalized absence
seizures.

16.2
The Equal-time Correlation Matrix

Let us start with some basic definitions and properties of the equal-time correlation
matrix. For a measured multivariate time series Xi(t) (i = 1 . . . M) the equal-time
correlation matrix C (see, e.g., [21]) is constructed by first normalizing

X̃i(t) = Xi(t) − 〈Xi〉t

σt
i

, (16.1)

and then evaluating the matrix elements as Pearson’s correlation coefficients

Cij(t) = 1
T

T∑
t=1

X̃i(t)X̃j(t) = 〈X̃iX̃j〉t. (16.2)

In the last two equations averages are denoted by 〈·〉 and the standard devia-
tions by σ. They are calculated over all time steps t ∈ [1, T ]. Equation (16.2) can
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equivalently be written as

C = 1

T
X̃X̃t. (16.3)

Here a matrix notation using the M × T-data-matrix with elements X̃it = X̃i(t)
has been introduced and the symbol t denotes the transposition of the data
matrix X̃.

The normalization eq. (16.1) removes the amplitude information of the data and
implies for the average 〈X̃i〉t = 0 and for the variance 〈X̃2

i 〉t = 1. Hence, only the
shape but not the variance or the offset of the signals influence the value of the
correlation coefficients. Let us resume the following important properties of the
C-matrix:

Cii(t) ≡ 1 (16.4)

Cij(t) = Cji(t) (16.5)

−1 ≤ Cij(t) ≤ 1. (16.6)

The first equation implies simply that each signal is perfectly correlated to itself.
The symmetry property (16.5) takes into account that the correlation between
signal Xi(t) and Xj(t) is the same as that between signal Xj(t) and Xi(t) and finally,
(16.6) indicates that the correlation coefficients vary between ±1, the completely
correlated or anti-correlated cases. Furthermore, each row (or equivalently column)
of C displays the cross correlations of a specific data channel with all others, i.e.,
the matrix (16.2) is written in the ‘channel basis’.

16.3
Eigenvalues, Eigenvectors and Interrelations between Data Channels

The discussion of the M eigenvalues λi and eigenvectors �vi of C, which can be
obtained by solving the equation

C�vi = λi�vi, (16.7)

will be a central part of this contribution. Together with (16.4) one obtains an
additional constraint for the eigenvalues which is given by the trace of C:

Tr C =
M∑

i=1

Cii =
M∑

i=1

λi = M. (16.8)

If some of the eigenvalues λi increase, this change has to be compensated by a
corresponding decrease in some of the remaining ones such that the sum (16.8) is
equal to the number of data channels.

In fact, all the information about the linear two-point correlation structure of
two time series Xi(t) and Xj(t) is contained in the bivariate measures represented
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by the M(M − 1)/2 independent matrix elements Cij. The advantage of the linear
correlation coefficient is that it is easy to calculate and provides a straightforward
interpretation. However, there are two serious deficiencies in these quantities. First,
particularly for large M, it is difficult to follow all matrix elements in the course
of time. Second, due to the finite value of T there is a certain number of random
correlations of order ∼1/

√
T hidden in the Cij. That is to say, for finite T the sum

(16.2) results in a non-zero value even in the case of completely uncorrelated signals
Xi(t) and Xj(t). On the contrary, with the help of the eigenvalues and eigenvectors
it is not only possible to separate random and non-random contributions, but in
addition, to capture interrelations between 2 ≤ m ≤ M signals. In principle, the
Pearson coefficient quantifies the ‘similarity’ between two time series. It turns
out that the eigenvalues and eigenvectors provide a kind of sorting of the data
channels due to their similarity. Independently whether two or more data channels
are simultaneously ‘similar’ the groups of interrelated signals can be identified.
For this reason these quantities are the central focus of this contribution.

Let us illustrate this aspect by the following geometrical argument. For this
purpose we consider a multivariate random (not necessarily uncorrelated) process
described by �X = (X1, . . . , XM). In this representation the Xi = X̃i(t) at a fixed time
step such that each �X represents a single point in the M-dimensional phase space
spanned by the data channels, i.e., �X is one column of the M × T data matrix
X̃ from (16.3). In the special case where the process which generates the Xi is
Gaussian and properly normalized, the joint probability distribution of the events
Xi in the M-dimensional phase space can be described by [22]:

G(�X ) = G(X1, . . . , XM) = 1√
(2π)MdetC

exp
{
−1

2
�XtC−1 �X

}
. (16.9)

where �Xt is the transposed M-dimensional data vector and C−1 is the inverse
correlation matrix, which is symmetric as C is symmetric. The reason why the
inverse of the correlation matrix appears in the last formula can intuitively
be understood by considering the probability density of a univariate (i.e., one-
dimensional) Gaussian process which is given by

G(x) = 1√
2πα

exp
(

−1

2
(x − µ)α−1(x − µ)

)
, (16.10)

where µ is the center of the distribution and α = σ2 the square of the standard
deviation or variance. In the multivariate case, the scalar value µ has to be replaced
by the vector of mean values �µ and the variance α by the covariance matrix
� = 1

T XXt. If additionally the random process is normalized to zero mean and unit
variance as in (16.1), the vector �µ will be equal to the null vector and the covariance
matrix converts to the correlation matrix (16.3).

The contour where the exponential (16.9) takes 1/eth of its maximum value is
given by the (M − 1)-dimensional set of points satisfying

1

2
�XtC−1 �X = 1. (16.11)
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The last equation defines an ellipsoid in the M-dimensional phase space, whose
symmetry axes (the principal axes) are in general not parallel to the chosen
coordinate system. This can be achieved by introducing some orthogonal transfor-
mation D

1

2
�XtDtDC−1DtD�X = 1

2
�XtDtdiag(C−1)D�X = 1. (16.12)

D provides a rotation of the original coordinate system in which the correlation
matrix is written (the channel basis) to its principal axes, i.e., a coordinate system
which is parallel to the symmetry axes of the point set defined by (16.11).

In (16.12) diag(C−1) denotes the diagonalized form of the inverse of the cor-
relation matrix. Hence, the directions of the symmetry axes are given by the
orthogonal transformation performing the rotation. As the eigensystem of the
inverse of a matrix is identical to the eigensystem of the matrix itself, the columns
of the orthogonal transformation D are the eigenvectors of the correlation matrix.
As the eigenvalues of diag(C−1) are equal to 1/λi; i = 1, . . . , M, it turns out that
half of the lengths of the M symmetry axes of the characteristic ellipsoid of the
joint probability distribution di are equal to the square root of the eigenvalues of
the correlation matrix: di = √

λi. For the uncorrelated case, the ellipsoid is the
M-dimensional unit sphere. In that case, all eigenvalues are degenerate and equal
to one. For any non-zero correlations the sphere deforms to some ellipsoid whose
half-axes length satisfy the trace condition (16.8) as

M∑
i=1

λi =
M∑

i=1

d2
i = M. (16.13)

For the Gaussian processes considered above, the joint probability distribution
is completely determined if one knows the direction and length of the symmetry
axes of the ellipsoid, which is by means of the normalization (16.1) centered
at the origin. Hence, for such processes, the solution of (16.7) provides the
complete information. For non- or almost Gaussian processes, the knowledge of the
eigenvalues and eigenvectors might give at least a first approximation of the shape
of the joint probability distribution. The quality of this approximation depends
essentially on the higher moments of the joint distribution such as skewness,
kurtosis, etc. However, in any case it remains clear that the set of eigenvalues and
eigenvectors present multivariate quantities, which provides information about the
characteristics of the joint probability distribution of the underlying process. As
we will argue in the next chapter, they measure the degree of ‘similarity’ between
2 ≤ m ≤ M data channels.

16.4
Random and Non-random Level Repulsion

In this section we discuss in which manner two point correlations between data
channels provoke non-random repulsions between the eigenvalues of C. Most of
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the arguments given in this section are equally valid if, e.g., mutual information
instead of the Pearson coefficient is used in order to create some interdependence
matrix. The only necessary requirement is that the chosen bivariate measure is
real and symmetric in order to provide real eigenvalues and, in order to guarantee
the validity of the trace condition (16.8), the measure should be appropriately
normalizable.

A qualitative understanding of how the eigenvalues react under a given correlation
pattern can be obtained by considering the following simple cases. If, for example,
all signals Xi(t) are completely independent, all non-diagonal elements of C will be
equal to zero, at least for stationary, infinitely long time series. In that case, C is
already diagonal and all M eigenvalues will be degenerate (i.e., they have the same
value) and will be equal to one. Consequently, the ellipsoid in phase space turns
to an M-dimensional unit sphere as mentioned above. For finite but long data
segments Xi(t), all non-diagonal elements of C will take random values close to
zero which lifts the degeneration and the eigenvalues will be randomly distributed
around unity, see e.g. [23].

If, on the other hand, all signals Xi(t) are identical, all entries of the C-matrix
will be equal to one. As a consequence there remains only one non-zero eigenvalue
λM = M in order to satisfy the conservation of the trace (16.8) and the prolate
ellipsoid collapses to a one-dimensional subset given by a finite segment of length
2
√

M along the main diagonal in the M-dimensional phase space. For M highly
correlated (but not identical) time series, all non-diagonal elements will take values
close to unity and a large gap between the largest eigenvalue and all others occurs.
In such a situation λM is close to the maximum value M while all others take values
close to zero [23] and the ellipsoid also shows a well pronounced prolate shape.

Considering a more complicated example, we suppose that the dynamical state of
the system in question can be characterized by K groups of correlated data channels
(‘correlation clusters’) where, for the moment, interrelations between these groups
are of negligible strength. If one choses an adequate indexing of the data channels,
the corresponding correlation matrix will have a block-diagonal structure. For
each group containing mk correlated signals an mk × mk-dimensional block of
elevated correlation coefficients occurs, while all other entries of C, including the
components connecting the different blocks, will be given by random numbers
whose magnitude (e.g., the standard deviation of its distribution function) is
determined by the amount of random correlations, i.e., the length T of the data
segment. Note, eigenvalues and eigenvectors are invariant under any permutation
of the index set of the data channels, but only with an adequate choice of the indices
is the block-diagonal structure visible. By diagonalizing the correlation matrix, for
each of those blocks, exactly one large eigenvalue and mk − 1 small ones appear.
If there are additionally signals belonging to none of these blocks, there will be a
corresponding number of eigenvalues randomly distributed around unity. Again,
the widths of this randomly distributed eigenvalues are determined by the amount
of random correlations and noise. In the sequel, this group of exclusively randomly
correlated eigenvalues will be denoted as the ‘bulk’ [13]. Geometrically, in phase
space K prolate ellipsoids of dimension mk appear additionally to a unit sphere
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whose dimension is given by the number of data channels belonging to the bulk.
If all matrix elements of C connecting the blocks and those connecting the blocks
with the bulk are exactly zero they are located in different orthogonal subspaces of
the whole phase space.

In general, one can summarize the reaction of the eigenvalues on a given
correlation structure as follows [23]:

1. The number of displaced eigenvalues equals the total number of correlated
data channels. This displacement is generated by a repulsion between
eigenvalues located at both edges of the spectrum in order to satisfy (16.8).

2. The relevant information about the correlation structure of a multivariate
data set is imprinted locally, in small parts of the entire eigenvalue spectrum.

3. For each cluster of correlated signals one large and a certain number of
small eigenvalues are repelled.

4. The strength of the repulsion is determined by the amount of correlation
and the size of the cluster.

5. In principle, the structure of the corresponding eigenvectors contains
information about which of the data channels belong to which correlated
group. However, in the case of non-stationary time series it is hard to
extract this information from the eigenvector components, see [24, 25] and
Section 16.7.

16.5
RMT Measures: Motivation and Definition

In principle, the scheme described in the last section suffices to separate random
and genuine correlations and gives a method of extracting information from the
eigenvalue spectrum of C. This concept has been used for multivariate EEG analysis
in [18] where a systematic study of the ictal activity of 100 focal onset seizures has
been presented in order to characterize the spatio-temporal correlation dynamics
of these extreme events. Using a running-window approach, the characteristics of
the spatio-temporal correlation pattern can be revealed via the time evolution of
the spectrum of eigenvalues and eigenvectors of the correlation matrix. Once the
gaps in the spectrum provoked by the (non-random) repulsion of eigenvalues
are identified, one can, in principle, extract the complete information about the
correlation structure. On the other hand, not only are the eigenvalues λi of the bulk
affected by random fluctuations, but to a certain extent the repelled ones are also.
Hence, if the amount of random correlations is large in comparison to the genuine
correlations, it is difficult to identify the repelled eigenvalues by visual inspection.
Therefore, quantitative measures are required, which are able to detect even tiny
non-random displacements of the eigenvalues.

Such tools are provided by Random Matrix Theory (RMT) which originated from
the field of nuclear physics in the early fifties [26]. In general, the description of
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many-body systems is quite cumbersome and computationally time consuming. On
the other hand, the nuclear system has a rich structure whose signatures have been
found experimentally and its theoretical description presented a real challenge.
As a prominent example we mention the so-called ‘neutron resonances’ [27],
with lifetimes which are about five to six orders of magnitude longer than
those expected for nuclei. A detailed microscopic description seemed hopeless.
Instead Wigner proposed a statistical treatment of these compound nuclear states,
by using (almost) random Hamiltonians, which respect only general symmetry
properties such as e.g., time reversal invariance. This approach turned out to
be very successful for the statistical description of nuclear spectra [28, 29] and
provided the theoretical basis for a new research field, the physics of quantum
chaos [30]. Using the mathematical apparatus of RMT [31], universal statistical
properties of a variety of physical systems could be compared and classified. The
key point of all these studies was to apply sensitive measures, able to detect
correlations within the eigenvalue spectra of (Hamiltonian) matrices [29]. In the
context of the correlation matrix we aim to distinguish random from non-random
repulsions of eigenvalues of C. Therefore, it seems most appropriate to apply
RMT correlation measures to the eigenvalue spectra of the empirical correlation
matrix.

One of the most popular measures is the so-called nearest-neighbor distribution
P(s) [29, 30, 32] which measures the amount of fluctuations of the spacings s
between neighboring eigenvalues. Suppose the size of an eigenvalue λi is known,
P(s) quantifies the probability of finding the next eigenvalue at a distance s. As
a matter of fact, this probability depends crucially on the density function of the
eigenvalues

ρ(λ) = 1
N

N∑
i=1

δ(λ − λi), (16.14)

i.e., the average distance between adjacent λi is, in general, different close to the
borders of a spectrum and in the central part. If one wishes to compare results
obtained from different systems such as compound nuclear states [28], a hydrogen
atom in a magnetic field [33], eigenmodes of a microwave cavity [34] or elastic
waves within a crystal of irregular shape [35] one has to put the eigenvalue spectra
on the same footing. This is done via the so-called ‘unfolding procedure’ where the
spectra of C are transformed such that the distance between adjacent λi becomes
unity on average and one is left exclusively with the fluctuations around this mean
value.

To this end, one usually calculates the so-called accumulated level density

N(λ) =
∫ λ

−∞
ρ(λ′) dλ′ (16.15)

which counts the number of states in the interval [−∞, λ]. It can be split into a
smooth and a fluctuating part

N(λ) = Nsmooth(λ) + Nfluct(λ). (16.16)
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As the fluctuating part

ρfluct(λ) = dNfluct(λ)

dλ
(16.17)

is zero on average, the mean level density is solely given by

ρsmooth(λ) = dNsmooth(λ)

dλ
. (16.18)

If the smooth part of the accumulated level density Nsmooth(λ) is known, the
eigenvalues �i of the unfolded spectrum are obtained by

�i = Nsmooth(λi). (16.19)

The crucial problem of unfolding a spectrum in this way is to find the correct
form of ρsmooth(λ) or Nsmooth(λ), respectively. In particular, if the analytical formula
for the smooth part of the level density is unknown, one has to perform a fit to
the numerical probability distribution of the eigenvalues. To this end different
strategies can be used. A common procedure is a polynomial fit to the numerically
obtained accumulated level density N(λ). This fit function is then used to perform
the unfolding transformation equation (16.19), see, e.g., [32]. Another technique, the
so-called Gaussian broadening, approximates the delta distributions in (16.14) by
Gaussian distributions centered at each eigenvalue λi. The width of the Gaussians
is adjusted such that the resulting curve describes Nsmooth(λ).

However, independent of which kind of procedure is used, at the edges of the
spectrum the description of the experimental data is not satisfactory. Therefore, in
any practical application, a certain percentage of the spectrum at both edges has
to be neglected (usually about 20 to 30%). Additionally, a fit to the accumulated
level density always implies a certain mixture of bulk and edge properties (spectral
average). As we are aiming at an extraction of the fluctuation properties:

(a) locally for small parts of the eigenvalue spectrum (in extreme cases between
two eigenvalues only);

(b) along the whole spectrum including the edges,

it is preferable to proceed differently in this step.
Under the assumption that one can create a (possibly small) ensemble of

correlation matrices over a certain interval of the data set, we simply normalize
each distance by its own ensemble average [36]:

s
(n)
i = λ

(n)
i+1 − λ

(n)
i

〈λi+1 − λi〉 n
where i = 1 . . . M − 1 and n = 1 . . . Nens (16.20)

Here 〈. . .〉n denotes the average over an ensemble of size Nens and we naturally
obtain 〈si〉n = 1 for all i. Using (16.20) we can calculate the nearest-neighbor
distribution P(si) for each of the distances si individually.

However, the application of these concepts to EEG recordings bears the additional
difficulty that the experimental data do not only contain the correlations produced
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by the electrical brain dynamics but will be contaminated by correlations uniquely
produced by the chosen EEG reference. Each reference point influences the
result of a measurement in a particular way such that different parts of the
spectrum of eigenvalues (and eigenvectors) is modified by it. This distortion of
the eigenvalues spectrum can be sufficiently strong such that possible changes in
the correlation pattern caused by the brain dynamics are completely blurred [37].
Hence a systematic analysis is required in order to determine: (i) how a given
EEG reference influences the results obtained by measures derived from Random
Matrix Theory; and (ii) if it is possible to correct for this influence, at least to a
certain extent. Such a study is presented in [37] where six commonly used EEG
references have been considered, their influence on the results has been quantified
and the performance of a correction method evaluated.

Finally the question remains as to which distributions can be used to test the
null hypothesis of only randomly correlated data. The natural choice in our context
will be correlation matrices derived from independent Gaussian white noise, the
so-called Wishart Ensemble (WE) [21,38]. Unfortunately, for this ensemble no exact
formula for the nearest-neighbor distribution of the WE is available. Nevertheless,
empirically it is well established that at least for the case M � T the P(s) of the WE
is not distinguishable from the Gaussian Orthogonal Ensemble (GOE), for which
a multitude of analytical results is published, see e.g., [31]. The GOE consists in
the set of matrices that are invariant under orthogonal transformations and having
random elements which are drawn from a Gaussian probability distribution.

16.6
Application to a Test System

In order to check the validity of these concepts with some concrete examples we
generate data from the M = 20 Rössler system in the chaotic regime:

Ẋi = −ωYi − Zi + η

K∑
k=1

∑
n∈N(k)

(Xn − Xi)

Ẏi = ωXi + βYi + η

K∑
k=1

∑
n∈N(k)

(Yn − Yi) (16.21)

Żi = 0.1 + Zi(Xi − 8.5)

with ω = 0.98 and β = 0.28. The coupling strength between units is controlled via
the parameter η, which is non-zero only if unit i belongs to one of the K correlation
clusters. N(k) denotes the index set of those oscillators belonging to cluster k.
The equations (16.21) are integrated via a fourth-order Runge–Kutta algorithm
with step width 0.1 and the time series are sampled from the X -coordinates.
In a first example only two units are coupled with η = 0.044. We generated
Nens = 500 and 105 data segments of length T = 8000 sampling points and
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Fig. 16.1 (a) to (d) Nearest-neighbor spacing
distribution of the system (16.21) when two
of 20 units are coupled. The dashed lines
indicate a statistics with Nens = 500 correla-
tion matrices and the solid line histograms
are obtained for Nens = 105 matrices. (a)
to (d) shows the results for s1, s2, s18 and
s19, respectively. In (e) the spectrally aver-
aged result is shown, while (f) gives the

nearest-neighbor distribution for the system
(16.21) for the case of two mutually inde-
pendent correlation clusters. Shown are the
results for s17 and s19 as dashed and dot-
ted histograms. The spacing distribution for
distance s18 is drawn as a solid line. In all
panels the solid continuous line indicates
the theoretical result for the GOE.

calculated the correlation matrix as well as its eigenvalues. Then the unfold-
ing procedure (16.20) for each of the M − 1 distances was performed and the
nearest-neighbor distributions P(si), i = 1, . . . , M − 1 were calculated. The results
are summarized in Figure 16.1, which shows the nearest-neighbor distribution
for distance s1, s2, s18 and s19 in (a) to (d) respectively, in comparison with
the theoretical result for the GOE. Figure 16.1(e) shows the spectrally averaged
result.

For the given coupling scheme one expects a repulsion between the largest
and lowest eigenvalue. Consequently the distribution of distances s1 = λ2 − λ1

and s19 = λ20 − λ19 are more narrow than the theoretical result for the GOE
which reflects the situation of purely random correlations, or in the present
context, purely random repulsions between the corresponding eigenvalues. The
non-random repulsion between λ1 and λ20 leads to a decrease in the fluctuations
of s1 and s19. However, this effect is more pronounced at the lower edge than
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for the distance between the two largest eigenvalues. This is remarkable in the
sense that the lowest eigenvalues (and their corresponding eigenvectors) are
commonly considered as strongly noise contaminated and therefore disregarded;
a point of view which is supported not only by recent publications applying
RMT methods to time series analysis [13] but is also an essential aspect of the
theoretical background of Principal Component Analysis where only a few of the
largest eigenvalues are taken into account. In the present example, the opposite
is true. The changes observed for the distribution of s1 are more significant
than those for s19. Even for a comparably small ensemble of Nens = 500 the
difference between P(s1) and the GOE is significant while for the same statistical
quality P(s19) is hardly distinguishable from the universal RMT result (compare
Figures 16.1(a) and (d)). This is at first glance a surprising result which finds
an explanation with the help of (16.8). When the repulsion occurs only between
a single large and a small number m � M of small eigenvalues, it is evident
that the relative change of λM is smaller than that of the lowest eigenvalues in
order to satisfy the trace condition (16.8). Consequently, the changes at the lower
border of the spectrum are more significant than those for the largest eigenvalues.
This is also imprinted in the distribution of level spacings as illustrated by this
example.

Furthermore, we find it remarkable that the information about the correla-
tion structure is not smeared out along the spectrum but is induced locally.
Only the distances s1 and s19 show a reduced amount of fluctuations, while
the adjacent distances s2 and s18 already follow the GOE distribution precisely.
Finally, we emphasize that spectral averages wipe out the effect. If, as in the
present example, deviations from the universal RMT behavior are only visible
at the edges of the spectrum or locally in a few level spacings, correlations are
hardly detected when spectral averages are considered. This is exemplified in
Figure 16.1(e), where the spectrally averaged nearest-neighbor distribution is pre-
sented. Note, in the average the distributions of distances s1 and s19 are also
included, which are usually neglected due to a poor performance of a fit at the
borders. However, deviations from the GOE curve are only significantly visible
when the ensemble size Nens is quite large. Otherwise, the erroneous conclu-
sion from this result would be that the system does not contain any genuine
correlations.

Next we illustrate the results when K = 2 small mutually independent cor-
relation clusters are formed. For each cluster mk = 2 Rössler oscillators are
coupled with η = 0.048 such that one expects repulsions between two eigen-
values at each border of the eigenvalue spectrum. In this way two elevated
eigenvalues at the upper edge and two decreased eigenvalues at the lower bor-
der occur. As the coupling between the clusters is zero, the spacing distribution
between the two largest, and correspondingly between the two lowest, eigenval-
ues should follow the random matrix prediction, while a significant deviation
should appear for the distribution of distances s18 and s2. In Figure 16.1(f) only
the spacing distributions between the four largest eigenvalues are shown. As a
similar behavior can be seen for the spacings of the corresponding eigenvalues
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at the lower border, these figures are disregarded. The numerical results con-
firm our supposition nicely. While P(s18) is more narrow than the GOE, both,
P(s17) as well as P(s19) follow the RMT prediction with high accuracy. Note, in
the case of any non-zero interrelation between the two clusters a deviation for
P(s19) (and correspondingly for P(s1)) has also to be expected. Hence, the iden-
tification of all non-random repulsions between eigenvalues provides important
information about the number of correlation clusters and the total number of
correlated signals can be deduced. Furthermore, the distribution of spacings be-
tween the enlarged eigenvalues gives an additional hint to possible inter-cluster
relations.

16.7
Cluster Detection based on Eigenvectors

A complete picture of the correlation structure; namely, which data channel corre-
spond to which of the correlation clusters, requires a reliable clustering algorithm.
In principle, this information is encoded in the structure of the eigenvectors
corresponding to the repelled eigenvalues. However, inter-cluster correlations and
random correlations will cause a non-trivial mixing of the eigenvectors such that
the cluster structure cannot be seen directly from their large components (Figure
16.2(a)). Therefore, in [24, 25] an algorithm is proposed which not only allows one
to identify the members of the correlation clusters but additionally provides an
estimate of how strongly involved a certain data channel is in a given correlation
cluster, and how strong the inter-cluster correlations are.

The scheme of this algorithm can be sketched as follows. The number K of
clusters is given by the number of enlarged eigenvalues. Their corresponding
eigenvectors will be denoted by �vi. The basic idea of this technique is to construct
suitable linear combinations of the �vi such that each for the new vectors (denoted
as Cluster Participation Vectors �wi) only those components which correspond to data
channels belonging to one of the clusters have a prominent size. This is achieved
by maximizing the distance measure

Dln = D(�wl, �wn) =
M∑

i=1

|b2
il − b2

in| (16.22)

where the bil are the components of the vector �wl. From the b2
ij the data channels be-

longing to each of the K clusters can be identified, see Figure 16.2(b). Furthermore,
with the help of the so-called Cluster Participation Coefficients

�l =
K∑

k=1

|〈�vk| �wl〉|2λk (16.23)

it is possible to estimate the average strength of the intra-cluster correlations

Ck ≈ �k − 1

mk − 1
(16.24)
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Fig. 16.2 Comparison of the average of the
squared components of the four largest
eigenvectors �vl of a correlation matrix of di-
mension M = 20 with those of their linear
combinations �wl for Nens = 100 independent

realizations. The error bars are often the
same size as the symbols. The channels that
contribute to the K = 3 clusters are marked
by full symbols (•, �, �) and the uncorre-
lated ones by open circles (◦).

as well as the inter-cluster correlation strength

Dkl ≈ 〈�wl|�vk〉�k − �l√
mkml

. (16.25)

In these equations 〈·|·〉 denotes the scalar product of two vectors, ml the number of
data channels belonging to cluster l, Ck the average correlation strength of cluster k
and finally Dkl the average strength of the inter-cluster correlation between cluster
k and l. Note that the statistical uncertainty of the relations (16.24) and (16.25) are
smaller than for simple averages over pre-identified blocks of the correlation matrix.
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A detailed description of the method as well as the discussion of several applications
to artificially created and experimental recordings can be found in [24, 25].

16.8
Application to EEG Recordings

The method described above has so far found several applications to electroen-
cephalographic recordings. In [18] the evolution of the correlation pattern during
epileptic seizures was studied. To this end, 100 focal onset seizures (in particular
49 secondarily generalized and 51 complex partial seizures) of 60 patients were an-

alyzed, i.e., the relative eigenvalues λrel
i = λi−λi

σi
, i = 1, . . . , M are calculated, where

λi and σi are the mean and standard deviation of the eigenvalue λi evaluated over
an adequately chosen reference interval. By using a sliding window the relative
changes of the eigenvalues and consequently the development of the correlation
structure could be traced. As the number of electrodes of the recordings vary
from patient to patient and, in order to make the results more transparent, only
the average of a certain number of large as well as small eigenvalues has been
considered. Contrary to the general belief that epileptic seizures present a kind
of static hypersynchronous state, the authors of [18] found that the brain dynam-
ics at seizure onset is not characterized by a drastic increase in synchronized,
namely correlated, activity. Instead they report for secondary generalized seizures
a small but significant correlation loss during the first half of the seizure. For
each of the 100 recordings they found a substantial increase of correlations at
seizure termination. They consider this change of correlation structure as ‘generic’
because it was observed in all seizures independently of the anatomical location
of the seizure onset zone or of seizure duration, number of channels, etc. The
authors argued that the decorrelation of EEG activity might be caused by different
propagation times of locally synchronous ictal discharges from the seizure onset
zone to other brain areas. At the same time they speculate that the gradual increase
of correlated EEG activity before seizure end could be an active seizure termination
mechanism. These results could be confirmed by a subsequent study of six status
epilepticus EEG recordings from six patients [19] where a similar analysis to that
in [18] was performed. In all six recordings the amount of correlation fluctuates
around some relatively low level during ongoing epileptiform activity and only
persistently increased before, or in one case, at the end of status epilepticus.
These findings support the hypothesis that increasing synchronization of neuronal
activity may be considered as an emergent self-regulatory mechanism for seizure
termination.

In [20] a study of surface EEG recordings of nine primarily generalized absence
seizures from five patients was presented. There, the temporal evolution of the
absolute and relative eigenvalues was analyzed (similar to [18, 19]). In addition,
the components of the largest eigenvectors shown for preictal and ictal activity
were compared, and the nearest-neighbor distribution was calculated individually
for each distance between eigenvalues (as described above). The objective of this
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work was two-fold. It was aimed at characterizing the temporal evolution of the
correlation pattern during the seizure as well as the transition to the seizure.

As a result it was found that in six of nine seizures, the two largest eigenvalues
separate significantly from all others while almost all of the remaining eigenvalues
decrease. In one patient a strong separation of only the largest eigenvalue was
observed. Evaluating an ensemble of correlation matrices for the ictal period
it turned out that the spacing distribution of the distance between the two
largest eigenvalues deviated only slightly from the GOE while the distribution
of the distance between the second and third largest eigenvalue was significantly
narrower (Figure 2 in [20]). This situation is qualitatively similar to that shown in
Figure 16.1(f). In terms of zero lag correlations this behavior can be interpreted as
the formation of two weakly connected correlation clusters during the seizure.

The calculation of the relative eigenvalues as a running window revealed inter-
esting changes of the correlation pattern at the transition to the seizure. A detailed
inspection of the time course of the smallest relative eigenvalue reveals a significant
correlation loss just before seizure onset. A few seconds before the first spike-wave
activity is observed, the smallest relative eigenvalue increases drastically, while
during spike-wave activity it strongly decreases. In fact, the increase prior to the
seizure could be observed in all nine seizures and although the recordings were
contaminated by (occasionally strong) artifacts, the increase in λrel

1 was more pro-
nounced than many of the correlation changes due to muscle artefacts. Often this
decorrelation was manifested only in the evolution of the smallest eigenvalue. For
this reason it is considered the result of a correlation change where probably only
two data channels participate. Repeating the analysis with subsets of electrodes in
one patient showed that the observed correlation loss was restricted to electrodes
positioned in the frontopolar, frontal right region of the scalp.

16.9
Conclusions

In this contribution a truly multivariate method for the analysis of the spatio-
temporal evolution of inter-relation patterns measured in extended systems is
proposed. Here the term multivariate does not refer to a simple accumulation
of bivariate measures but to a characterization of inter-relations between all data
channels. The information contained in the data is neither frozen in a single
quantity nor are M2 quantities produced from an M-dimensional data set.

The keypoint of the method is the distinction of random and non-random
repulsion of the eigenvalues of the interdependence matrix by using techniques
known from Random Matrix Theory. The method indicates, in a self-contained
manner, which part of the spectrum of eigenvalues and eigenvectors carry genuine
information of the interdependence structure of the system. In addition it is
possible to deduce how many and which channels are inter-related.

Although in principle the method can be generalized to symmetric and normal-
izable nonlinear measures like, e.g., mutual information, so far results have been



References 225

obtained mainly for the linear Pearson’s correlation coefficient. Using this mea-
sure for Gaussian processes the joint probability distribution in the M-dimensional
phase space is completely determined, while for other processes a good approxi-
mation of linear inter-relations between all data channels is obtained.

The comparably small computational effort of the method allows for a real-time
application to surface as well as intracranial EEG recordings. In several recent
studies it was confirmed that the approach presented in this contribution provides
a powerful tool for EEG analysis.
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17 M. Barthélemy, B. Gondran and
E. Guichard, Phys. Rev. E 66, 056110
(2002).

18 K. Schindler, H. Leung, C. E. Elger
and K. Lehnertz, Brain 130, 65
(2007).



226 16 A Multivariate Approach to Correlation Analysis Based on Random Matrix Theory

19 K. Schindler, C. E. Elger and
K. Lehnertz, Clin. Neurophysiol. 118,
1955 (2007).

20 G. Baier, M. Müller, U. Stephani
and H. Muhle, Phys. Lett. A 363, 290
(2007).

21 R. J. Muirhead, Aspects of Multi-
variate Statistical Theory, John Wi-
ley & Sons ltd, New York (1982).

22 T. W. Anderson, An Introduction
to Multivariate Statistical Analy-
sis, Chapter 2.3 of the Third edi-
tion, John Wiley & Sons Ltd, Inc.
Hoboken, New Jersey (2003).

23 M. Müller, G. Baier, A. Galka,
U. Stephani and H. Muhle,
Phys. Rev. E 71, 046116 (2005).

24 C. Rummel, G. Baier and M. Müller,
Eur. Phys. Lett. 80, 68004 (2007).

25 C. Rummel, Phys. Rev. E 77, 016708
(2008).

26 E. P. Wigner, Ann. Math. 53, 36
(1951), E. P. Wigner, Proc. Cam-
bridge Philos. Soc. 47, 790 (1951).

27 A. Bohr and B. R. Mottelson,
Nuclear Structure, (Benjamin,
New York, 1969), Vols. 1 and 2.

28 R. U. Haq, A. Pandey and
O. Bohidas, in: K. H. Böchhoff (Ed.),
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17
Seizure Prediction in Epilepsy: Does a Combination of Methods
Help?

Hinnerk Feldwisch genannt Drentrup, Michael Jachan, Björn Schelter

17.1
Introduction

Epilepsy, as one of the most common neurological diseases, affects up to 1 % of
the world population. Due to the unforseeable nature of epileptic seizures, many
patients suffer from severe impairments (see Chapter 1). In addition to established
therapies like antiepileptic medication or surgical resections, closed-loop prediction
and intervention methods could open up a new window of treatment strategies. For
this prospect, several methods have been proposed for the prediction of epileptic
seizures (see Chapter 2). By means of linear and nonlinear time series analysis,
predictive features have been found in several studies (for a review see [1]). If preictal
changes in the EEG could be detected early and with a sufficient sensitivity and
specificity, alarms could be raised to warn the patients. Furthermore, automatically
triggered interventions like focal drug applications or electrical stimulations would
be feasable [2, 3].

Several prediction methods which were proposed up to now show a statistically
significant prediction performance, but are hardly sufficient for clinical applications
[1, 4]. As a promising approach to improve prediction results, a combination of
two prediction methods is investigated in this study. If it would be possible to
combine the predictive power of different methods in a complementary manner, a
considerable increase in sensitivity and/or specificity could be expected. Especially
a combination of a bivariate and a univariate prediction method has some prospect
of success, as also concluded by Mormann et al. [5]. Here, we analyze the bivariate
mean phase coherence and the univariate dynamical similarity index. For both
methods, statistically significant prediction performances have been reported in
earlier studies [5,6]. The mean phase coherence is a measure based on the concept
of phase synchronization which was successfully applied to detect preictal changes
in synchronization of intracranial EEG recordings [7, 8]. For one channel of the
EEG, the dynamical similarity index continuously compares the reconstructed
dynamics of a sliding window of the signal to a reference window, which contains
no seizure activity [9].

Seizure Prediction in Epilepsy. Edited by Björn Schelter, Jens Timmer and Andreas Schulze-Bonhage
Copyright  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40756-9
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The seizure prediction characteristic (SPC, [10,11]) provides a general methodol-
ogy for a systematic analysis of the prediction power of these methods. It allows the
assessment of the sensitivities of prediction methods dependent on their specificity,
such that the performance and applicability of therapeutic intervention strategies
can be evaluated. A comparison with a random predictor raising alarms just by
chance and without utilizing any EEG data enables the assessment of statistical
significance of each method [12].

For the combination of prediction methods, two different kinds are conceivable
following Boolean logics. A logical ‘OR’ combination would consider each alarm of
any of the individual methods as an alarm of the combined system, whereas for a
combination using a logical ‘AND’ all individual methods have to trigger an alarm
during a given time window to cause an alarm of the combined system.

For a statistical analysis of the combined prediction systems, the seizure predic-
tion characteristic is adapted to this paradigm. Besides the intervention time and
the seizure occurrence period, a new time window has to be defined for the ‘AND’
combination to reflect the time window during which all methods must trigger
an alarm to cause an alarm of the prediction system. Since the degree of freedom
is increased for the combined methods, the concept of the random predictor is
extended accordingly.

17.2
Materials and Methods

In this chapter, we propose two different kinds of combination of two individual
prediction methods: the mean phase coherence and the dynamical similarity index.
Both the prediction performances for the individual methods and the performances
of the combinations are assessed. The seizure prediction characteristic is used as
the conceptual framework of the prediction and for statistical validation of these
methods.

17.2.1
The Seizure-prediction Characteristic

For a thorough assessment of the predictive power of seizure-prediction methods,
the seizure-prediction characteristic was introduced (see [10–12]). The essence of a
clinically applicable ‘prediction’ is covered by the concept of the intervention time
(IT), which is defined as the minimum period of time between a triggered alarm
and the earliest possible occurrence of a subsequent seizure. This time window
can be used in clinical applications, e.g., allowing an intervention method to take
effect. To restrict the subsequent interval during which the seizure is expected
to occur, the seizure-occurrence period (SOP) is defined. A short SOP limits the
time a patient has to be under alert for a predicted seizure. However, prediction
performance will likely decrease with shorter SOPs due to the immanent variability
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in seizure occurrence. Therefore, a trade-off between a short SOP and sufficient
sensitivities may be chosen dependent on the clinical need.

Apart from the sensitivity as the ratio of correctly predicted seizures to the number
of seizures investigated, assessment of the specificity of a certain prediction method
by evaluating interictal data is also crucial [1,12]. For this purpose, a maximum rate
of false predictions is predefined in order to limit the number of false predictions
to clinically reasonable values.

To assess the statistical significance of prediction performance, based on the
seizure prediction characteristic, an analytical random predictor can be utilized. If
the performance of a specific prediction method is higher than that of a random
predictor which does not exploit any information contained in the EEG data, it
can be regarded as statistically significant. The random predictor raises alarms
just by chance in accordance with a Poisson distribution resulting in inter-alarm
intervals that are exponentially distributed and limited by the same maximum
rate of false alarms FPRmax. In dependence on FPRmax and the length of SOP,
there is a certain opportunity to raise an alarm preceding a seizure, such that
it will be regarded as a correct prediction. The probability to predict k out of K
seizures correctly can be calculated by a binomial distribution (see Chapter 18).
Furthermore, a correction for multiple testing is possible to take the retrospective
selection of a best feature into account.

17.2.2
Combination of Individual Prediction Methods

In order to merge the predictive power of individual prediction methods, several
ways to combine the alarms, which are triggered by the methods, are conceivable.
Following Boolean logics, both an ‘AND’ combination and an ‘OR’ combination are
studied in this manuscript. For the ‘AND’ combination, all individual methods have
to trigger an alarm during a certain time window, the so-called combination window
(CW). If this is the case, the combined system triggers an alarm, which is followed
by the intervention time and the seizure occurrence period (see Figure 17.1). This
alarm is a correct prediction if a seizure occurs during this time window, otherwise
it is a false positive prediction. For the ‘OR’ combination, each alarm of each
respective method triggers an alarm of the combined system. However, if two
alarms follow each other closer than within IT + SOP, only the first alarm will be
taken into account.

Depending on the coincidence of alarms triggered by the individual methods,
either of the two types of combination could be advantageous. Two methods with
low thresholds of triggering a prediction, i.e., causing a large number of false
predictions if applied individually, could be linked using the ‘AND’ combination to
select those predictions which are generated contemporaneously by both methods.
This procedure is expected to reduce the number of false predictions considerably
while preserving the sensitivity of the individual methods. The ‘OR’ combination
results in a unification of individual prediction methods as all alarms of individual
methods lead to alarms of the combined system. If, for example, each of the
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SOP

Time

 IT

Alarm

Method 1

Method 2

Combination

CW

Fig. 17.1 Combination of two prediction
methods following a logical ‘AND’: An alarm
of one of the methods is followed by a com-
bination window (CW). If the other method
also triggers an alarm during CW, a pre-
diction of the combination is triggered. In

accordance with the seizure-prediction char-
acteristic, the intervention time (IT) has to
be seizure-free to allow a successful interven-
tion. The seizure is predicted to occur during
the seizure occurrence period (SOP).

methods is able to predict a specific seizure type, a combination using a logical
‘OR’ would match the correct predictions of both methods together. But the
false alarms also add up. Hence, the ‘OR’ combination would only be useful if
the benefits of the combination of the true predictions exceed the disadvantages
regarding the increase in false alarms.

To investigate these dependencies, we apply the mean-phase coherence and the
dynamical similarity index to an intracranial long-term recording of the EEG of
one patient, and combine them with both types of combination. In order to reduce
the number of channels and channel combinations of both methods, three focal
and three extra-focal electrode contacts are preselected by a certified epileptologist,
resulting in 15 features for the mean phase coherence and in six features for the
dynamical similarity index. Furthermore, a best feature of both the mean phase
coherence and the dynamical similarity index is selected in the first part of the data.
For this purpose, both methods are applied individually to this data, and the features
which achieve the best sensitivities given the maximum false prediction rate are
used for the combination in the second part of the data. For the combination, both
thresholds of the individual methods are chosen such that the sensitivity of the
combination is optimal (see Figures 17.2 and 17.3). For the ‘AND’ combination,
several false alarms (marked by dash-dotted black vertical lines) of one method
were not followed by alarms of the other methods during the combination window.
Therefore, for the combination, less false alarms arise. Threshold crossings, which
triggered false alarms of the individual methods, led to correct alarms (solid black
vertical lines) from the combination. In this example, an improved sensitivity is
observed for the ‘AND’ combination, while fewer false predictions were made.
By applying the ‘OR’ combination, both methods are joined in a complementary
manner. Seizures, which can be predicted correctly only by one method, can be
predicted by the ‘OR’ combination. But also the false alarms of both methods are
joined together.



17.2 Materials and Methods 231

110 120 130 140 150 160 170
0

0.5

1

M
P

C
 (

ch
an

ne
l 1

,4
)

110 120 130 140 150 160 170
0

0.5

1

S
IM

 (
ch

an
ne

l 6
)

110 120 130 140 150 160 170

‘A
N

D
’ c

om
bi

na
tio

n

Time [h]

Fig. 17.2 Results of the ‘AND’ combination.
The time course of the features is shown
for the mean phase coherence (MPC) in
the top row and for the dynamical simi-
larity index (SIM) in the middle row. The
thresholds (gray horizontal line) for both
methods were chosen such that the sensi-
tivities of the combinations (bottom rows)
were optimal. Seizures less than 1 h apart
from the previous one are marked by bold
black lines and threshold crossings by gray

vertical lines. Dash-dotted (solid) black lines
mark threshold crossings causing false (cor-
rect) alarms. After an alarm, no further
alarms are raised during the duration of
IT + SOP. Furthermore, the combination win-
dows of the ‘AND’ combination are shown
in gray. Its length and also SOP was set to
10 min, FPRmax to 0.15 false predictions per
hour. An optimal value for IT of 50 min was
chosen.

17.2.3
Patient Characteristics

For an analysis of seizure prediction methods and their combination, a continuous
registration of intracranial EEG of one patient was used, which was recorded
during presurgical epilepsy monitoring at the Epilepsy Center of the University
Hospital Freiburg, Germany. The patient suffered from pharmacoresistant epilepsy
including simple and complex partial seizures of hippocampal and neocortical
origin. After the resection the patient became seizure-free (Engel Ia [13], Wieser 1
[14]). The retrospective evaluation of the data received prior approval by the Ethics
Committee, Medical Faculty, University of Freiburg, Germany. Informed consent
was obtained from the patient. The EEG data were recorded by strip and depth
electrodes using a Neurofile NT digital video EEG system with a sampling rate
of 1024 Hz. Digitized with a 16 bit analogue-to-digital converter, the data were
high-pass filtered at 0.5 Hz and anti-aliasing filtered. The EEG channels were
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Fig. 17.3 Results of the ‘OR’ combination.
The time course of the features is shown
for the mean phase coherence (MPC) in
the top row and for the dynamical similarity
index (SIM) in the middle row. The thresh-
olds (gray horizontal line) for both methods
were chosen such that the sensitivities of
the combinations (bottom rows) were op-
timal. Seizures less than 1 h apart from

the previous one are marked by bold black
lines and threshold crossings by gray vertical
lines. Dash-dotted (solid) black lines mark
threshold crossings causing false (correct)
alarms. After an alarm, no further alarms are
raised during the duration of IT + SOP. SOP
was set to 30 min, FPRmax to 0.15 false pre-
dictions per hour. An optimal value for IT of
60 min was chosen.

referenced to the channel displaying lowest epileptic activity. A 50 Hz notch filter
was used to eliminate possible line noise.

The recording included 6.8 days and 22 seizures. For the selection of best features
of both individual methods, 36 hours of recording including 12 seizures were used.

17.3
Results

In order to test both the ‘AND’ and ‘OR’ combination, they are applied to the mean
phase coherence and the dynamical similarity index of one patient as described
in the previous section. For this study the false prediction rate for each individual
algorithm was restricted to FPRmax = 0.15 false predictions per hour, and the
duration of IT was optimized between 10 min and 60 min. In Figure 17.4, the
prediction performance of the methods based on the mean phase coherence
(MPC) and the dynamical similarity index (SIM) and their combinations are
shown dependent on the duration of the seizure occurrence period. For the ‘AND’
combination, the duration of the combination window was set to the duration of
SOP. In addition to the observed sensitivity, the lower and upper critical sensitivity
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Fig. 17.4 Results of the individual methods
mean phase coherence (MPC, black) and
dynamical similarity index (SIM, white) in
comparison with the optimized combina-
tions following a logical ‘AND’ (light gray)
and ‘OR’ (dark gray) applied on selected fea-
tures dependent on the seizure occurrence
period. Upper row: optimal sensitivities;

middle and lower row: lower and upper
critical sensitivity values of the random pre-
dictor. Sensitivity values which exceed the
corresponding lower/upper critical values are
marked by one/two asterisks. A maximum
false prediction rate of 0.15 false predictions
per hour was used. The intervention time
was optimized between 10 min and 60 min.

values of the random predictor are displayed. The lower critical value corresponds
to the assumption of complete dependence on the information contained in all
features of one method, whereas the upper critical value corresponds to complete
independence of these.

On the one hand, it can be observed that with longer seizure occurrence periods
the sensitivity increases, since the probability increases to correctly predict the
seizures. On the other hand, for the same reason the critical values of the random
predictor also increase. The sensitivities of the phase synchronization index exceed
the upper critical value for SOP = 20 min and 30 min. The same is true for
the dynamical similarity index for SOP = 10 min. For the ‘AND’ combination, a
doubled sensitivity of 44.4 % to 77.8 % can be observed in comparison with the
average of the individual methods. Due to the fact that only one feature is analyzed
for each method, the upper and lower critical sensitivity values are identical. For
the ‘AND’ combination, the sensitivity exceeds the critical value for all durations
of SOP. For the ‘OR’ combination, slightly lower sensitivities of 33.3 % to 66.7 %
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are observed, which exceed the critical value for SOP = 10 min, 20 min, 30 min,
50 min and 60 min.

17.4
Discussion

Precursors of imminent epileptic seizures have been found in a number of stud-
ies. Whereas some of them have proved their predictive value by also showing
statistical significance when rigorous testing methods have been applied, the rela-
tionship of sensitivity and specificity is currently insufficient for clinical applications
[4, 5].

In this manuscript, we investigate the possibility of combining different pre-
diction methods to improve their prediction performances. By using exemplary,
intracranial recordings of the EEG of one patient, two different kinds of combi-
nations are tested. For a logical ‘AND’ combination, both methods have to raise
alarms during a specified time window, whereas each single alarm of one method
leads to an alarm of the combined system following a logical ‘OR’ combination.
For a maximum false prediction rate of 0.15 false predictions per hour and inter-
vention times between 10 min and 60 min, an increase in sensitivity is observed.
For the ‘AND’ combination, the sensitivity doubles in comparison with the average
of the individual methods; for the ‘OR’ combination it increases slightly less. In
comparison with critical sensitivity values of an analytical random predictor, the
combinations show statistically significant prediction performances.

These findings demonstrate that the combination of prediction methods is
a promising novel approach in order to increase the performance of seizure-
prediction methods. The extraction of different aspects of chances in preictal
dynamics can be combined and advantageous characteristics of various methods
can be joined. This is of particular value, as a number of individual prediction
algorithms have proven statistically significant performances, but an insufficient
relation between sensitivity and specificity to be useful in a clinical setting [15, 16].
The improvements in sensitivity by the combination of two methods could represent
a relevant step in the direction of future clinical applications.

In this study, the combination of a univariate and a bivariate measure was applied.
This can be transferred to other algorithms. It is easily conceivable that prediction
methods could be designed focusing on a certain aspect of brain dynamics with
high sensitivities not covered by others. A combination could then improve the
predictive power.

These results show that combinations can improve seizure-prediction perfor-
mance as compared with an application of individual prediction methods alone.
Using the Boolean operations introduced here, two scenarios are conceivable.
If, on the one hand, the applied individual prediction methods are known to
produce independently occurring false alarms, the ‘AND’ combination is a promis-
ing approach to reduce the number of false alarms considerably. Particularly
with regard to future applications, this is advantageous especially if a warning
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is to be given to patients, or if an intervention method to be applied critically
depends on a low false prediction rate to be tolerable for clinical applications.
Based on the results presented here, further studies of the occurrence of false
alarms should be undertaken for currently available and future seizure-prediction
methods.

If, on the other hand, prediction methods are available which complement each
other with respect to correct predictions, the ‘OR’ combination may offer advantages
by combining the predictive power of the individual methods. In situations when
the specificity is less relevant than the sensitivity, this can help to increase the
number of correctly predicted seizures.

The optimization of the combination of prediction methods allows one to
suit the prediction method to the specific requirements of clinical settings. Due
to the optimization, best sensitivities can be achieved for a given maximum
false prediction rate. For intervention systems with negligible side effects, like
pharmacological or electrical interventions at the focus site, a high sensitivity is
desirable, whereas false alarms are of less importance in this scenario. If, on the
other hand, alarms are raised to warn the patient, an optimal specificity has to
be achieved, such that the patient is not impaired by false alarms. By optimizing
the combinations, both can be achieved such that the combinations behaves as a
single-prediction system. The observed improvements suggest that this could help
to enhance prediction performances considerably.
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Can Your Prediction Algorithm Beat a Random Predictor?

Björn Schelter, Ralph G. Andrzejak, Florian Mormann

18.1
Introduction

To date, approximately one in four epilepsy patients cannot be treated successfully
by common therapeutic strategies, so they continue to suffer from unforeseen
seizures. A precise prediction at a sufficiently early stage before seizure onset
would offer new therapeutic options such as warning devices or even seizure-
prevention techniques, e.g., by applying electric stimuli [1]. For this purpose,
several time series analysis techniques based on the theory of linear and nonlinear
dynamics have been applied to intracranial and scalp EEG data. For an overview of
these studies see, e.g., [2, 3]. Significant changes in the EEG dynamics in a range
from seconds up to hours in advance of seizure onsets have been reported. These
studies have strengthened the hope that not only interictal states between seizures
but also specific preictal states exist preceding seizures. The existence of preictal
periods is the basic requirement for genuine seizure prediction.

When a focal seizure is generated, synchronized epileptic brain activity is initially
observed only in a small area of the brain. From this focus, the activity spreads
out to other brain areas. Provided that there is information about an impending
seizure contained in the EEG data in advance of the seizure onset, time series
analysis techniques are supposed to detect such changes. Visual inspection of the
EEG data has not yet led to the detection of any characteristic changes preceding
seizure onsets. In recent years, several seizure-prediction algorithms have been
claimed to be capable of detecting a pre-seizure state.

Many of the studies addressing the challenge of predicting seizures lack method-
ological rigor. For this reason four major methodological guidelines have been
proposed in a recent review of the field [3] to ensure a basic methodological
standard. First, seizure-prediction techniques should be evaluated on long-term
continuous data. No preselection of the data should be performed. Several phys-
iological as well as pathological states of the patients should be covered by the
data. Secondly, if training of a prediction algorithm is necessary, results should
be reported separately for training and testing data. Thirdly, when assessing
seizure-prediction performance, the assessment has to be based on sensitivity as
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well as specificity. The procedure of how the specificity is assessed should be
clearly reported. A natural, straightforward measure for specificity is one minus
the fraction of time under false warning. Fourthly, a proper statistical validation
of seizure-prediction performance is mandatory. To this end, either analytical or
bootstrap-based techniques are available in the literature.

In this chapter, we concentrate on the last two points, namely the assessment
of performance and statistical significance. The remaining two points require a
rather huge amount of data that is not available to several groups. But ensuring
a rigorous assessment, including a sound statistical analysis, are the crucial steps
in the field of seizure prediction for the near future. Comparisons of published
seizure-prediction performances also become possible especially by following the
two guidelines 3 and 4.

The chapter is structured as follows. First, for the performance assessment, the
ROC statistics and the seizure-prediction characteristic are briefly summarized.
Subsequently, for the statistical evaluation three different random predictors
are reviewed. First, an analytic random predictor is presented followed by two
bootstrap-based techniques. The two bootstrap-based techniques are the seizure
time surrogates and the measure profile surrogates. The chapter concludes with
some remarks about the advantages and disadvantages of the respective techniques.

18.2
Performance Assessment

Briefly, we review a general methodology used to predict epileptic seizures before
we address the two assessment methodologies, namely, the receiver operating
characteristic (ROC) and the seizure-prediction characteristic.

18.2.1
General Methodology of Seizure Prediction

Seizure-prediction techniques generally utilize electroencephalography (EEG) data
to predict epileptic seizures. Although other signals than the EEG are also con-
ceivable for seizure prediction, we explain the basic methodology on EEG data.
Time series analysis techniques are applied to EEG data, which may or may not be
preprocessed by applying for example filters. Using a moving-window technique,
the output of the time series analysis techniques is also a time series, the so-called
measure profile or feature of the seizure-prediction technique. The measure profile
can also be post-processed, for instance by smoothing. For example, a crossing of a
certain threshold of the actual measure profile can be considered as the predictive
alarm for the upcoming seizure. Since it would be useless to indicate only that there
will be a seizure some time after the alarm, a certain time window in which the
seizure is predicted to occur is needed. This time interval is the so-called prediction
horizon or seizure-occurrence period SOP.
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To analyze seizure-prediction performance, a study design which does not rely on
the notion of an alarm issued by a quasi-prospective algorithm is also conceivable.
In a retrospective, statistical (as opposed to algorithmic) study design, certain
statistical characteristics (e.g., the amplitude distributions) of a certain feature
during a pre-seizure period of the same length as the SOP and prior to this period,
are compared (e.g. [4]). A certain difference between the feature characteristics of
these two periods indicates a prediction performance which subsequently has to be
tested for statistical significance. Alternatively, the time a feature is above a certain
threshold in the pre-seizure period can be compared with the time the feature is
above the threshold during the interictal epochs. The former would be a marker of
the sensitivity while the latter quantifies the specificity.

18.2.2
The ROC Curve

The basic idea of the receiver-operating characteristic originates from signal-
detection theory. A receiver-operating characteristic (ROC) or simply ROC curve or
ROC statistics is a graphical plot of the sensitivity versus one minus the specificity
of a binary classifier system as its discrimination threshold is varied.

Adjusted to seizure prediction, the sensitivity is the number of true positive
predictions divided by the total number of seizures analyzed. A prediction is
considered to be a true one, if the seizure onset falls into the occurrence period.
The specificity is the fraction of true predictions divided by the total number of
predictions. In terms of false predictions the specificity is identical to one minus
the number of false predictions divided by the total number of predictions made.

Considering the consequences of actions to be taken, a statistical evaluation of the
relative number of both correct and false predictions as measures of sensitivity and
specificity, has to be made. Sensitivity and specificity, however, are not independent.
It is always possible to obtain a high sensitivity at the expense of a low specificity, a
problem which becomes particularly relevant if the costs of erroneous actions are
high. In addition, patients’ trust and willingness to follow instructions based on
such predictions critically depend on their specificity.

In Figure 18.1 a schematic drawing of a ROC curve is shown. The dashed line
indicates the performance achieved by chance in the ROC statistics. To quantify
the prediction performance, the area under the curve should be used. The obtained
area should be compared with the area under the diagonal, which is identical to
0.5. Since the ROC curve can take values of one for a ‘perfect’ performance (star in
Figure 18.1) or zero indicating no performance at all, the difference between the area
under the curve and the one under the diagonal takes values between 0.5 and −0.5.
To interpret these values, a statistical evaluation procedure is, however, needed.

In a retrospective statistical analysis that compares predefined preictal and inter-
ictal periods, definitions of sensitivity and specificity are quite straightforward [4].
In the case of a quasi-prospective algorithm, however, each false alarm forces the
patient to wait for the full duration of the SOP before he can determine that this was
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Fig. 18.1 Example of an ROC curve (solid
line). The dashed main diagonal line rep-
resents the performance which can be
achieved by chance. The star denotes the
best possible ROC statistics as both the sen-
sitivity and the specificity are identical to
one. Values of the ROC above the diagonal

line indicate better results, although they
are not yet statistically compared to a ran-
dom predictor. A natural choice to quantify
the performance of the ROC curve; the area
under the curve, is compared to 0.5, which
corresponds to the area under the diagonal
line.

indeed a false alarm. During this time, the patient must assume a seizure is im-
pending and if another (false) alarm occurs within this period, the patient needs to
‘restart’ the SOP. A natural measure of specificity, or rather of 1-specificity, for quasi-
prospective algorithms is therefore to quantify the fraction of time spent under false
warning. This also allows for an easy performance evaluation since the time under
(false) warning is also the expected value for ‘accidently’ predicting seizures, i.e.,
the ‘random’ sensitivity corresponding to the dashed diagonal line in Figure 18.1.

18.2.3
The Seizure-prediction Characteristic

To base actions on predictions, the above mentioned requirements have to be
fulfiled. Additionally, in order to react to a prediction, a time period has to be
specified between the time of prediction and the beginning of the occurrence
period; the intervention time. Depending on the desired interactions, a spectrum of
time periods may be conceivable and reasonable. In the case of warning a patient,
an intervention time of minutes to hours is necessary.

In contrast to the ROC statistics, the seizure-prediction characteristic (SPC) [2,5]
evaluates the seizure-prediction performance with respect to the false-prediction
rate FPR, i.e., the number of false predictions per certain time window, and the
two time intervals, the intervention time and the occurrence period.

Although the two approaches ROC and SPC are basically the same, in certain
cases one might be favorable to the other. As described above, the time under false
warning is a superior quantity used to measure the burden which the prediction
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technique puts on the patient. Having the false prediction rate at hand when
answering this question is rather straightforward, as the false-prediction rate has
simply to be multiplied by the seizure-occurrence period. But this holds only under
some assumptions. For instance, two false predictions should be separated by a
time interval larger than the occurrence period. Moreover, the occurrence period
has to be constant for all predictions.

In Figure 18.2 the seizure-prediction characteristic describing the sensitivity as
a function of intervention time and the occurrence period is shown. Figure 18.2(a)
depicts the intervention time and occurrence period, Figure 18.2(b) exemplifies
the prediction characteristic for different prediction methods with respect to the
occurence period.

18.3
Statistical Validation

For both methodologies given above, an evaluation procedure is needed to de-
termine if the seizure-prediction performance is significantly different from the
chance level. Besides the number of seizures investigated and the duration of
the interictal period, the number of EEG channels utilized by a seizure-prediction
method has to be taken into account. It ranges from a few to more than a hundred.
Using, for instance, symmetric and bivariate synchronization quantities between
each pair of electrode contacts, leads to a high number of possible combinations.
Assuming that there is no predictive information in the EEG data and thus in the
feature time series, the probability of predicting at least some of the seizure onsets
correctly by chance increases with increasing number of electrode contacts. To
assess the superiority of a prediction method over a random predictor, the same
number of electrode contacts has to be considered. There are several possibilities
for the choice of a random predictor. Here, the notion random predictor covers
analytic as well as bootstrap-based techniques. We present an overview of the
random predictors currently used in prediction studies.

18.3.1
The Analytic Random Predictor

A test to decide on the statistical significance of a given value of the seizure-
prediction characteristic is defined by the ‘prediction performance’ of an unspecific
random prediction. For an unspecific random prediction, alarms are triggered com-
pletely at random without using any information contained in the EEG. The random
predictor is based on a homogenous Poisson process for the false predictions.

At any single sampling point of a feature extracted from a time series, the
probability of raising an alarm is

PPoiss = FP

N
(18.1)
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Fig. 18.2 (a) Schematic drawing of the time
relationships between an alarm based on a
prediction algorithm, the period preceding
an expected event (intervention time) and
the uncertainty of the exact time point of
occurrence (occurrence period). Only events
occurring within the occurrence period are
considered as correct predictions in an anal-
ysis of the performance of the algorithm.
(b) Seizure-prediction Characteristic for a
fixed intervention time of 10 minutes and
false prediction rate of 0.15 false predictions

per hour depending on the duration of the
occurrence period evaluated for two exem-
plary seizure-prediction algorithms based
on intracranial long-term electroencephalo-
graphic data and a range of sensitivities for
a random predictor. It is possible to com-
pare different algorithms and to clarify their
superiority over random predictors. Note the
increase in correct predictions for the ran-
dom algorithm with increasing occurrence
periods.

where FP denotes the number of false predictions and N the number of samples.
Consider a time period of duration equal to SOP. If the product of the maximal
allowed false prediction rate and the occurrence period, FPRmax · SOP, is consider-
ably smaller than one, which is reasonable to ensure that the patient is not under
continuous warning, the probability of raising at least one alarm within SOP for a
given value of FPRmax can be approximated by [7]

P ≈ 1 − e−FPRmax · SOP ≈ FPRmax · SOP. (18.2)

The probability P forms the basis for a significance level to test whether the
sensitivity S(FPRmax, SOP, IT) of a prediction method is higher than the ‘sensitivity’
of a random predictor.

The intervention time, while being essential for the concept of prediction, has no
influence on the random predictor; only the duration of SOP is contained in (18.2)
for the probability P. This is intuitively understandable. Although the intervention
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time allows an intervention, it is only restricted by an upper limit demanded by
the seizure-prediction technique. Assume that a prediction of epileptic seizures
is possible with an intervention time of one hour, but the intervention needs
only minutes to become effective, one can always wait until the very last moment
before applying the intervention. However, if the desired intervention time is
one hour, and imagine that this intervention time is really needed, all patients
having an optimal intervention time of less than one hour cannot be treated by
this intervention. Here, optimal means that a highly significant seizure-prediction
performance could be obtained.

One should note that the duration of the intervention time will, in practice, always
influence the random predictor. This is because, for long intervention times, it is
not guaranteed that there is enough time between two consecutive seizures to allow
for such a long intervention time. Therefore the number of seizures is indirectly
decreased, which influences the random predictor as discussed in the following.

A significance level should take into account that more than one seizure is being
investigated. Furthermore, usually a set of electrode contacts is analyzed which is
associated with a multiple testing problem. For instance, applying the bivariate
and symmetric measure mean phase coherence [6] to EEG time series recorded
from six electrode contacts, 15 different time courses of the mean phase coherence
are extracted simultaneously. Increasing the number of electrode contacts to a
value of ten, for instance, would result in 45 different pairs of electrodes with
corresponding time courses of a possibly bivariate seizure-prediction technique.
Therefore, the probability of changes in any of these time courses leading to a
prediction of seizures by chance, strongly increases with the number of electrode
contacts investigated. Both aspects are discussed in the following. The probability
of predicting at least k out of K seizures by chance follows a binomial distribution
with probability P [7]

Pbinom(k, K, P) =
∑
j≥k

(
K
j

)
P j(1 − P)K−j (18.3)

Furthermore, the dimension d of the feature vector has a direct influence on the
significance level. Increasing the number of features also increases the probability
of predicting seizures by chance. The maximum number of independent features
for an r-variate, symmetric feature extraction using n electrode contacts is given by

dmax,r =
(

n
r

)
. (18.4)

The dimension d of the extracted feature vector has to be included in the probability
of predicting seizures by chance. The probability of predicting at least k of K
seizures using d measure profiles is

Pbinom,d(k, K, P) = 1 −

∑

j≤k

(
K
j

)
Pj(1 − P)K−j




d

. (18.5)
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This equation is based on the assumption that the P-values are identical for all
measure profiles. In applications, the seizure-occurrence period is likely constant,
but the false-prediction rate is usually not the same for all channels. This is the
reason for using the concept of the maximum false-prediction rate. It provides an
upper bound for all features. Therefore (18.5) yields a conservative approximation
for the true probability if the P-values are considerably different.

The number of independent degrees of freedom spanned by the measure profiles
is usually unknown. The effective value deff (n) of d might be smaller than dmax,r . For
instance, signals from neighboring electrode contacts may be correlated, leading to
a lower effective dimension of the extracted feature vector. Therefore, two critical
values have to be taken into account to test for statistical significance. For a
significance level α, the lower critical value is given by

σlow = argmaxk

{
Pbinom,1(k, K, P) > α

}
K

· 100% (18.6)

for d = 1. For an r-variate, symmetric feature extraction and n electrode contacts
investigated, the upper critical value

σlow = argmaxk

{
Pbinom,dmax,r (k, K, P) > α

}
K

· 100% (18.7)

is obtained for independent features [7].
The above-mentioned assessment methodology is also applicable to the ROC

statistics after some minor adaptations. Alternatively, two different data-driven
assessment concepts; so-called bootstrap techniques, have been suggested [8, 9].
The advantage of the analytic random predictor lies in the analytic expression for its
‘sensitivity’. Thus, the design of studies is possible. Assume that a given prediction
performance will be verified based on certain parameters for the intervention
time, the occurrence period, and maximum false-prediction rate based on a
d-dimensional feature. The above equations would provide the information of the
minimal number of seizures that have to be contained in the data to ensure that a
performance above chance level can be shown.

The bootstrap-based techniques show superior characteristics, for instance, when
assumptions made by the random predictor are not reasonable. For example, the
analytic random predictor is based on a homogeneous Poisson distribution for the
false predictions. This might not be the case or one might want to consider different
distributions for certain reasons. In those cases the analytic random predictor is
expected to be anticonservative. The bootstrap techniques reviewed in the following
sections present a way out.

18.3.2
Bootstrapping Techniques

An alternative approach to analytic random predictors is the concept of numer-
ical Monte Carlo simulations based on surrogate seizure predictors which are
constructed from constrained randomizations of the original seizure predictor
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(bootstrapping). These seizure-predictor surrogates are constrained to share spec-
ified properties with the original seizure predictor, but are otherwise random.
This approach offers a greater flexibility than analytical random predictors since
it allows one to test different null hypotheses by composing appropriate sets of
assumptions and constraints. Specifically, a certain assumption about the original
seizure predictor can be translated into a corresponding randomization constraint.
For example, if one assumes that the alarms are raised at a time-independent mean
rate, the predictor surrogates must be constrained to be time-independent, re-
gardless of potential time-dependencies of the original seizure predictor. If alarms
are assumed to be generated by a Poisson process, the predictor surrogate must
have an exponential inter-alarm-interval distribution, regardless of the original
distribution. If no assumptions about a potential time-dependence of the predic-
tor or the inter-alarm-interval distribution are intended, the predictor surrogate
must be constrained to share any time-dependence and the inter-alarm-interval
distribution with the original predictor. Except for these constraints, the surro-
gate seizure predictor must be random. The assessed performance value for the
original predictor is then compared with the predictive performance obtained for
an ensemble of predictor surrogates. If the performance of the original predic-
tor is significantly higher than the performance of the predictor surrogates, the
respective underlying null hypothesis can be rejected, i.e., the prediction algo-
rithm performs better than chance with respect to the assumptions described
above.
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Seizure-times Surrogates
As a first Monte Carlo approach for the evaluation of seizure-prediction statistics,
the technique of seizure-times surrogates was proposed [8]. In this approach the
intervals between seizures are shuffled while the original measure profiles are
kept unchanged (random permutation of inter-seizure-intervals). Accordingly, the
original seizure times are replaced with random times under the constraint that
the inter-seizure-interval distribution is maintained (Figure 18.3).

Let D1, . . . , Dn denote the intervals between consecutive seizures, where D1 is
the interval from the first seizure back to an arbitrarily defined starting point T0.
The seizure-times surrogates are now generated by the following steps. First, a
new starting point is defined as T∗

0 = T0 − ε(1h), with ε being a random number
uniformly distributed in [0, a] with a some arbitrary number. This is necessary as
the sum of all Di is constant. If the starting point was kept constant the very last
seizure would occur at the very same time for both the original seizure times as
well as the seizure-times surrogates, which would definitely influence the statistical
assessment. Thereby, starting at T∗

0 , surrogate seizure onset times T∗
1 , . . . , T∗

n are
produced by random permutations of D1, . . . , Dn (Figure 18.3).

The predictive performance is then calculated again from the unchanged measure
profile but now with regard to the pseudo seizure times of the surrogates. If the
predictive performance obtained for the original seizure times is higher than
the one for the seizure-times surrogates the underlying null hypothesis, which
is that the seizure predictor is not only naïve and unspecific but also stationary,
can be rejected (see, e.g., [4]). While conceptually straightforward, the practical
application of seizure-times surrogates can be problematic. Sometimes only a few
seizures are included in the recordings, and recordings can be interrupted by gaps.
Both problems can make the generation of a sufficient number of independent
realizations of seizure-times surrogates impossible.

Measure-profile Surrogates
As an alternative approach to seizure-times surrogates, the technique of measure-
profile surrogates was suggested [9]. These surrogates are generated by ran-
domizing the original measure profiles, while keeping the original seizure times
unchanged. In particular, the randomization has to be constrained in such a way
that any feature of the measure profile which is evidently not related to a true
predictive power of the seizure predictor, but which might influence the predictive
performance, should be mimicked by the measure-profile surrogates. This con-
strained randomization can readily be carried out using the technique of simulated
annealing. In the original publication [9], this technique was illustrated by using
the autocorrelation function and amplitude distribution of the measure profile
as constraints for the measure-profile surrogates. This approach offers a much
higher flexibility than seizure-times surrogates since any time-dependence of the
measure-profile statistics could readily be used as a constraint for the generation
of measure-profile surrogates. A drawback of this approach is that simulated
annealing can be computationally expensive.
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18.4
Conclusion

In this chapter the receiver-operating characteristic and also the seizure-prediction
characteristic have been discussed. Both assessment methodologies are inconclu-
sive without a reasonable comparison to a prediction performance which can be
achieved by chance. Two basic concepts of this aim have been suggested and used.
Although the analytic random predictor has been developed in the framework of
the seizure-prediction characteristic, it can be readily applied to the ROC statistics.
Similarly, the bootstrap-based random predictors can be readily applied to both the
seizure-prediction characteristic and the ROC curve, as they are extremely flexible
in this respect.

Nevertheless, the random predictors have certain advantages and disadvantages
some of which will be mentioned here. The most obvious advantage of the analytic
random predictor is that it can be calculated in almost no time and is therefore
suitable for study design. In contrast, bootstrap-based techniques are comparably
slow. Albeit that bootstrap techniques are also subject to certain assumptions, the
assumptions made by the random predictor are quite crucial. If for some reason
the inter-alarm interval is not exponentially distributed as assumed by the analytic
random predictor, bootstrap-based techniques are favorable. Moreover, if one
wants to distinguish a seizure-prediction performance achieved by the evaluation
of circadian dependencies alone, the measure-profile surrogates might be the
method of choice. In contrast, for the seizure-times surrogates it is feasible to keep
part of the inter-seizure intervals preserved, which might become important for
clustered seizures. While bootstrapping techniques in principle have the advantage
of being more flexible, great care must be taken to implement them according to
the correct null hypothesis in order to avoid hidden bias.

A detailed and sound comparison of the different approaches is, however,
an important task for future research. In the meantime one might consider it
reasonable to use all three complementary approaches. It would be worse to use
none of the random predictors. This would inevitably render a conclusive evaluation
of seizure-prediction performance impossible.

In conclusion, the methodological framework of the seizure-prediction charac-
teristic or ROC statistics, together with random predictors, allows for a scientific
evaluation of the prediction performance. In particular, it enables one to assess
prediction methods with predefined ranges for occurrence periods and parameter
ranges which are suitable for rationally based decisions.
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Testing a Prediction Algorithm: Assessment of Performance

J. Chris Sackellares, Deng-Shan Shiau, Kevin M. Kelly, Sandeep P. Nair

19.1
Introduction

Early investigations of seizure-prediction research were aimed at finding charac-
teristic and consistent changes in EEG prior to seizure onset. Evidence of seizure
precursors in the EEG were reported as early as the 1970s when investigators, using
linear signal processing methods [1–3], reported changes in EEG characteristics
beginning minutes prior to the onset of seizures. Some investigators found changes
in interictal spike distribution or incidence approaching seizure onset [4,5], whereas
others found no consistent changes in spike patterns [6–8]. These observations
were made by analysis of relatively brief EEG samples in a limited number of
patients. Even at that time, the researchers realized that the presence of preictal
changes in the EEG raised the possibility that seizures could be predicted.

With the introduction of faster computers with larger storage capacity, pioneers
in the field of seizure prediction began systematically to analyze longer segments
of EEG preceding and following seizures from a larger number of patients in
epilepsy monitoring units and to use novel and more sophisticated approaches to
signal processing. Motivated by theories that seizures may result from spontaneous
state transitions in a chaotic nonlinear system [9–18], some investigators began
to apply mathematical techniques developed for the study of complex nonlinear
systems to analyze EEG signals for characteristics unique to the transitions into
and out of seizures [18–34]. In addition, using linear measures, other investigators
reported new evidence of measurable preictal EEG changes [35] and their ability
to predict clinical seizure onset [36]. Some researchers also began to question
the usefulness of nonlinear measures, using similar methods to those previously
described [37–39]. These investigators raised questions about methods that em-
ployed the similarity index, the correlation dimension, the correlation integral,
and the Lyapunov exponent. In most instances, the investigators did not precisely
duplicate the methods they challenged. However, their reports served to temper
initial enthusiasm and confidence in finding clinically useful seizure-prediction
algorithms. Recently, the ability of a number of linear/nonlinear and univari-
ate/bivariate measures to distinguish the preictal from the interictal state have

Seizure Prediction in Epilepsy. Edited by Björn Schelter, Jens Timmer and Andreas Schulze-Bonhage
Copyright  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40756-9
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Table 19.1 Some Reported EEG Seizure Precursors.

Report Author(s)

Increased spatial distribution of interictal spikes [4]
Increased incidence of interictal spikes [8]
Spatial convergence of the short-term largest Lyapunov exponent [19]
Reduction in signal complexity [25]
Reduction of signal similarity between segments [28]
Increased incidence of power bursts [35]
Changes in marginal predictabilities between regions [34]
Reduced synchronization [41]

provided further evidence of significant differences in EEG characteristics between
the two periods [40]. While several measures showed significant differences, bivari-
ate measures were generally more effective than univariate ones. A summary of
some the most highly cited of these reports is provided in Table 19.1.

Based on these findings, many researchers have concluded that it may be
possible to predict seizures with automated algorithms based on quantitative EEG
analysis [41–45]; see [46] for a detailed review. These algorithms are computer
programs that read the raw EEG signal, calculate measures of specific signal
characteristics, compare these measures to threshold values, and generate seizure
warnings when pre-established criteria are met. The parameters of the algorithms
can be set to alter the sensitivity/specificity ratio. In most cases, specificity is
expressed as the false positive rate (i.e., the number of false warnings per unit
of time). In general, the higher the sensitivity obtained (i.e., the percentage of
seizures correctly predicted, by a preset definition), the greater the false positive
rate observed. Initial tests involved EEG recordings from a small number of
patients. While some of the results looked promising, the algorithms were not
validated statistically.

Although there remains a debate as to what constitutes an appropriate exper-
imental design, what statistical comparisons are optimal, and what benchmarks
constitute a good algorithm performance, several studies have been designed to
assess the performance of a seizure-prediction algorithm [45,47–52]. Some of these
studies assessed the test algorithm by reproducing the results in limited datasets,
and others re-evaluated the performance reported in the literature using the data
characteristics (seizure intervals, number of seizures, etc.) provided in the papers.
Unfortunately, most of these studies suggested that none of the reported seizure-
prediction algorithms performed at a level better than chance, and therefore the
algorithms were considered not useful for clinical applications. Because the results
from such assessments will have a significant impact on this research field, it is es-
sential that future studies be well designed with clearly defined research questions.

While seizure-prediction research has significant scientific implications regard-
ing the basic mechanisms of seizure generation, the potential impact on clinical
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care is of equal importance. For this reason, we wish to consider some of the issues
pertinent to testing seizure-prediction algorithms for clinical applications.

Up to this time, the focus of seizure-prediction research has been on devel-
oping quantitative descriptors for analyzing EEG during clinically relevant states
(interictal, ictal and postictal) and descriptors useful in the analysis of transitions
between these states. The existing body of work in this research area has provided
us with a rich variety of candidate measures for developing seizure-prediction
algorithms. Subsequent investigations could best be categorized as investigations
into the feasibility of seizure prediction with the algorithms incorporating these
quantitative descriptors. To advance the field into clinical applications, the next
phases of research will need to be preclinical testing and clinical trials. There is
a need to establish scientific criteria for preclinical efficacy and safety standards
and for clinical trial designs for subsequent human studies. Given the novelty of
this field, these phases will require some creativity. To some extent, the preclinical
testing must be driven by the clinical needs and the anticipated clinical evaluations.
Therefore, we will confine the remainder of our remarks to issues pertaining to the
clinical evaluation of seizure-prediction algorithms and devices.

Any clinical trial should include clearly stated clinical questions, well-defined
statistical hypothesis, and statistical justification. More specifically, a sound study
should be clear about the following questions: (1) What clinical application is being
considered? (2) What are the statistical hypotheses? (3) Are the confidence levels
sufficient for estimating the performance statistics, and for rejecting or accepting
the null hypothesis?

19.2
Correlation between Study Design and Clinical Application

The study design for statistical evaluation of a seizure-prediction algorithm de-
pends upon its intended clinical application. The definition of ‘effectiveness’ of the
algorithm, as it pertains to the study will depend entirely upon the intended clinical
application. For example, an implantable closed-loop seizure control device would
require a near-perfect prediction rate (sensitivity) with a moderately good false
prediction rate (specificity). One would want the device to be activated before every
impending seizure, provided that the side effects due to unnecessary interventions
are acceptable. In contrast, a monitoring device designed for use by nursing staff
would require a high, but not near-perfect, sensitivity and a very high specificity.
A few missed predictions is a great improvement on the current situation where
seizures are entirely unpredictable, but too many false predictions will not be toler-
ated by busy monitoring unit staff personnel. In addition, different clinical applica-
tions have different (1) patient populations, (2) potential research subject pools (each
with different clinical characteristics), and (3) types of EEG recordings (e.g., intracra-
nial versus extracranial electrodes). All of these factors affect the design of the study.

Generally, the main clinical applications of a seizure-prediction algorithm are
for inpatient monitoring and seizure-control devices. Inpatient monitoring can
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be done in an epilepsy monitoring unit, a general care unit, or an intensive
care unit. The criteria for a clinically useful prediction algorithm are obviously
different in different monitoring settings. For example, an epilepsy monitoring
unit would require a seizure-prediction system providing moderate high sensi-
tivity with low false-positive rate, whereas a general care or intensive care unit
would require higher prediction sensitivity with a moderately low false-positive
rate. In addition, EEG data characteristics are different among monitoring units.
For example, the average number of seizures recorded for each patient in an
epilepsy monitoring unit is between three and four. Therefore, it is not mean-
ingful to determine whether the performance of a prediction algorithm for each
individual patient is significantly better than chance (e.g., a random predictor).
It would be more meaningful to evaluate the algorithm performance with re-
spect to the proportion of test patients whose x % (e.g., two out of three) of
seizures can be predicted by the algorithm within a pre-determined horizon.
However, in the intensive care monitoring unit, where tens of critical events
could be recorded from each individual patient, it is reasonable to evaluate the
performance on each individual patient, although an overall assessment from
a group of patients still gives more meaningful conclusions. Other factors,
such as proper prediction horizon and cost/risk of a false positive or negative,
which are different in various monitoring units, would also affect the study
design.

Similarly, in the application for seizure-control devices, the satisfaction of a
seizure-prediction performance depends on the mechanism of the intervention
system, including the type, the effectiveness and the side effects of the controller.
For example, the criteria for a prediction performance would be different for an
electrical stimulation device compared with a drug-release control system.

19.3
Statistical Hypothesis

The first task of statistical design in a clinical trial is to translate clinical questions
into testable statistical hypotheses. In assessment of a seizure-prediction algorithm,
the underlying clinical question is whether the test algorithm is effective, or more
specifically, performs better than a pre-determined performance level (e.g., chance
level). However, the statistical hypotheses and the study design depend on how
the pre-determined performance level is defined. Using the ‘chance performance
level’ as an example, two different types of design have been reported. The first
type is based on the comparisons of some performance statistic estimated from the
test prediction algorithm against those from ‘controlled algorithms’ (e.g., random
predictor, periodic predictor), using the same test datasets [45, 48–51]. In this
case, the ‘chance performance level’ is defined as the prediction performance by
some ‘controlled prediction scheme’ that does not use any information from the
test EEG data. The statistical (null) hypothesis for this design (H0) is: the mean
performance statistic obtained from the test algorithm is the same as that from
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the ‘controlled algorithm.’ This design is straightforward because a ‘controlled
prediction method’ is easy to design and can be justified statistically. One obvious
choice is to simulate the predictions from a random Poisson process. Using the
same prediction parameter settings (e.g., prediction horizon), the hypothesis can be
tested by comparing the performance statistic between the test and the ‘controlled
algorithm’ using a group of patients.

The second type of design is based on the comparison of a performance statistic
estimated from the test datasets against those from ‘controlled datasets,’ using
the same test algorithm. In this case, the ‘chance performance level’ is defined as
the prediction performance of the test algorithm on the manipulated ‘controlled
data.’ The (null) hypothesis for this design (H0) is: the mean performance statistic
obtained from the original datasets is the same as that from the ‘controlled
datasets.’

This type of design is less straightforward than the first type, mainly because
there is a smaller consensus on what constitutes an appropriate ‘controlled dataset’
for testing a prediction algorithm. Andrzejak et al. (2003) [47] carefully constructed
‘seizure-time surrogates’ as ‘controlled data.’ However, not only is the statistical
justification of ‘seizure-time surrogates’ in relation to the ‘chance performance
level’ difficult to establish, but also the inter-dependency among the surrogates
would confound the conclusions of the hypothesis testing.

So, what are the differences between the two types of assessment? Do they
provide the same assessment of the test algorithm? Is it possible that, for the same
test algorithm, one type of null hypothesis is rejected and the other is not? Are there
other aspects of hypotheses that should be tested? These are important questions
in the assessment of a prediction algorithm, and they need to be answered by a
consensus of the community.

19.4
Statistical Justification

Besides the need for specification of the intended clinical application and the
statistical hypotheses, another important issue is the choice of test datasets, in
terms of their quality as well as the quantity, in order to have more reliable and
confident estimates of the prediction-performance statistics. Inappropriate choice
of the test datasets will not only waste the effort and resources spent in conducting
the study, but, worse, may also result in generating a false conclusion.

The most commonly used performance statistics for evaluating a seizure-
prediction algorithm are sensitivity and false prediction rate (per unit time),
or their combination such as the receiver-operating characteristic (ROC) curve.
The reliability of their estimations depends on the quality and quantity of the test
datasets. Several review articles have given guidelines for selecting test datasets
with respect to their qualitative characteristics (see [46] and the references therein).
Here, we will provide guidelines with statistical justification for the minimum
required number of seizures and the length of interictal recordings for reliable
estimates of the performance statistics of a seizure-prediction algorithm.
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19.4.1
Prediction Sensitivity

Sensitivity is estimated by dividing the number of correctly predicted seizures by
the total number of seizures. Therefore, the accuracy and the confidence level of
the estimated sensitivity depend on the total number of seizures included in the
estimation. When the number of seizures included in the analysis is too small,
the confidence level will be very low for a desired accuracy of the estimation.
For example, if a prediction sensitivity of 80 % is estimated from the prediction
of 10 seizures, there will be only a 20 % confidence level that the error of the
estimation is less than 10 %. Stated differently, there is only a 20 % chance that
the true sensitivity will be higher than 70 % (and lower than 87 %, but we are
more concerned about over-estimation for sensitivity estimation). Hence, there is
a great chance that the sensitivity is over-estimated. So, the question is: how many
seizures are sufficient to claim a meaningful sensitivity?

The number of seizures required can be calculated based on the confidence
limits for a binomial parameter [53] with the desired accuracy and the confidence
level. Figure 19.1 shows the 95 % confidence limits as a function of the number of
seizures included in the sensitivity estimation, with sensitivity estimated as 80 %.
In this example, at least 80 seizures are required to ensure, with 95 % confidence,
that the sensitivity is not over-estimated by more than 10 %. This suggests that
claiming or evaluating prediction sensitivity for an individual patient is almost
meaningless because of the lack of the required number of seizures. It is therefore
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Fig. 19.1 95 % confidence interval as a function of number
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necessary to combine seizures from a group of patients for a more meaningful
estimation. If one assumes that the average number of seizures recorded from
each patient is four, at least 20 patients will be required. Similar analysis can be
applied to determine the minimum number of seizures (or patients) required for
different sensitivity estimations.

19.4.2
False-positive Rate

The false-positive rate is estimated by dividing the total number of false predictions
by the total unit time (e.g., hours or days) that are outside the ‘prediction zone’
before each seizure (referred to as ‘interictal data’ hereafter). ‘Prediction zone’ of a
seizure, by definition, means the time interval during which a true prediction for
the seizure is possible, i.e., when a false warning cannot be produced. Obviously,
the accuracy and the confidence level of false-positive-rate estimation depend on the
length of the test ‘interictal data.’ If the interval is too short, then the confidence
level for the estimation will be very low for a desired error. For example, assume
that 24 hours of ‘interictal data’ are analyzed and a false-positive rate of three per
day is estimated. In this case, the researcher will only have 10 % confidence level
that the false-positive rate was not under-estimated by one per day. Hence, there
is a great chance that the false-positive rate is under-estimated. So, the question
is: how long must the cumulative interictal period be in a recording to claim a
meaningful false-positive rate?

The length of ‘interictal data’ required for estimating a reliable false-positive rate
can be calculated based on the confidence limits for a Poisson distribution [54]
with the desired accuracy and the confidence level. Figure 19.2 shows the 95 %
confidence limits as a function of the length of the ‘interictal data’ (in days), with
a false-positive rate estimated as three per day. In this example, at least 15 days
of ‘interictal data’ are required to have the accuracy of the estimation of less than
one per day with 95 % confidence. This again suggests that claiming or evaluating
a false-positive rate for an individual patient is not meaningful, especially for an
inpatient monitoring setting. Similar analysis can be applied to determine the
minimum number of days (or patients) required for different false-positive-rate
estimation.

19.5
Discussion and Conclusion

While there is much ongoing debate among researchers in the field of seizure
prediction, there is an approaching consensus that seizures are often preceded
by measurable changes in the EEG and that it is possible to design automated
algorithms to detect such changes. As long as we are in the phase of scientific
discovery, it is acceptable, and even preferable, for researchers to use different ap-
proaches for hypothesis testing and algorithm development and testing. However,
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as we enter into the phase of clinical translation, it is highly desirable to establish
standards for clinical trials and standards of algorithm performance for specific
clinical applications.

There is a need to establish standards for preclinical testing to determine whether
or not there is sufficient evidence for ‘efficacy’ to support clinical trials. In addition,
there is a need to establish standards of performance and experimental designs
for clinical trials. It is clear that preclinical testing must be designed to predict the
outcome of clinical trials. Therefore, a reasonable first step is to design clinical trials
that will provide meaningful results in terms of predicting the utility of a given
algorithm, or more precisely, devices incorporating that algorithm, for specific
clinical applications. The performance requirements and the conditions under
which the device must perform will differ for different clinical applications. Further,
experimental designs will also be restricted by the research subject population. For
example, if the intent is to test the seizure predictor in patients with primary
generalized tonic-clonic seizures, it is likely that the research will require large-
scale, long-duration outpatient trials using scalp electrodes. In fact, such studies
may not be feasible. On the other hand, some implantable devices will require
that research subjects be limited to patients undergoing electrode implantation for
presurgical evaluation, thus markedly restricting the available patient population.

Given the clinical limitations, it is essential that experimental design and
statistical analysis be well conceived. Further, it would be ideal for the community
to reach consensus on standards of experimental design and statistical analysis
as well as standards of acceptable performance for specific clinical applications.
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One can look to the anticonvulsant drug experience for guidance. Unfortunately,
modern standards of clinical research and experimental design were not applied to
anticonvulsant drug testing until well after the introduction of many anticonvulsant
drugs, some of which are still in use today.

In this chapter, we have not provided answers to the ideal experimental design
and approach to statistical analysis for clinical trials of seizure-prediction devices,
but have attempted to outline many of the clinical and statistical issues that need
to be considered in designing such trials.
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20
Considerations on Database Requirements for Seizure
Prediction

Carolin Gierschner, Andreas Schulze-Bonhage

20.1
Introduction

The need for extensive EEG databases for seizure prediction has increasingly
become apparent to the prediction community since rigorous statistical analyses
have been introduced for the assessment of prediction algorithms (e.g., [1, 2]). As
epileptic seizures are relatively rare and short events compared to extended seizure-
free periods, the importance of having long-term interictal data for an assessment
of specificity is evident. Early reports on high sensitivities achieved by algorithms
optimized to short preictal periods (e.g., [3–9]) could no longer be upheld when the
relative specificity of predictions was simultaneously considered using long-term
data.

Progress in the development of computer hardware, particularly the increases
in affordable storage capacities, now allow us to store multichannel EEG signals
even at high sampling frequencies, recorded continuously over periods of weeks.
On the other hand, the number of epilepsy centers performing intracranial EEG
(iEEG) recordings is to a relevant extent limited, and increasing economic pressure
to restrain recording periods to a minimum in these centers (P. Carney, lecture
held at the 3rd International Seizure Prediction Workshop in Freiburg) limits the
availability of long-term iEEG data comprising high numbers of seizures distributed
over long recording periods.

Currently, only a limited number of research groups have access to adequate
EEG data. The few available datasets (e.g., http://epilepsy.uni-freiburg.de/freiburg-
seizure-prediction-project/eeg-database) are being used by various research groups
from many nations (see Figure 20.1), although they do not provide continuous
long-term data and may thus be considered suboptimal, at least for the purpose of
developing and analyzing prediction algorithms.

Here, we outline prerequisites for an EEG database which fulfils some minimal
requirements for seizure prediction based on current practice at the Freiburg
Epilepsy Center.
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Fig. 20.1 Currently, 110 research groups from more than 20
countries (shown in black) use the Freiburg EEG database.

20.2
General Requirements for a Prediction Database

As pointed out above, a prediction database should contain biophysical raw data
of sufficiently long duration, including a relevant number of events of interest for
the purpose of analysis. In addition, the database structure should give access to
metadata allowing for the identification of patients undergoing a specified type of
telemetry, should provide access to information regarding the quality of EEG data,
and should allow the correlation of EEG data with clinically important information.

20.3
Raw Data

Raw data may be an integral part of the database; due to the size of EEG and
other data, these raw data may alternatively be stored independently and linked by
pointers. For seizure prediction, key raw data include:

• EEG

• ECG

• other physiological parameters (e.g., EOG, EMG, polysomnographic data)

• complementary data relevant to localization of recording sites like 3D MRI
and/or CT data sets

• video data on ictal and other events relevant to EEG interpretation.
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As indicated above, the continuity of long-term EEG and other physiological
data is of critical importance for statistical analyses. Given usual seizure frequen-
cies, a duration of several days to weeks is necessary for statistical evaluation
of the sensitivity and specificity of prediction algorithms. In addition, a min-
imum number of events (clinically manifest seizures; possibly also subclinical
electrographic seizure patterns) must be present in the data; a lower limit may
be 4–6. For the desirable separation of datasets into training and test data,
long-term recordings would have to comprise a higher number of seizures, e.g.,
more than 10. Seizure clustering may pose specific problems as many algo-
rithms have prediction horizons extending over hours [10, 11], (see Chapter 18),
minimal inter-seizure intervals have thus to be defined, which would typically
be in the range of 30 minutes to 5 hours for most of the published seizure-
prediction algorithms. In the case of more dense seizure clustering, specific
solutions have to be defined. Taken together, these requirements on data con-
tent are met only by a small subgroup of patients undergoing intracranial EEG
recordings.

20.3.1
Annotations to Raw Data

For an assessment of specificity and sensitivity of both detection and prediction
algorithms, a valid and complete annotation of ictal events is critical. Presently, this
requires the complete visual exploration of the data set by experienced electroen-
cephalographers. Depending on the duration of recordings, this puts a considerable
workload onto the evaluation team. In Freiburg, subclinical electrographic patterns
are also annotated, as present-day performance limitations of prediction algo-
rithms may be influenced by the occurrence of subclinical EEG patterns which may
greatly prevail over manifest seizures in some patients (Figure 20.2). Depending
on the specific purposes of evaluation, further analyses like sleep-staging, and
statements regarding specific investigations, like electrical mapping, may be of
interest.

Ictal electrographic pattern
Clinically manifest seizure

0 50 100 150 200 250

Time [h]

Fig. 20.2 Example of the temporal distribution of subclini-
cal (gray shorter lines) and clinical (black bold lines) seizure
patterns of a patient with mesiotemporal seizure origin and
right hippocampal sclerosis over a period of 260 hours of
continuous recordings. Note that more than 80% of electro-
graphic ictal epileptic patterns were subclinical.
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20.4
Metadata on Telemetry

Basic information on data acquisition includes.

• the type of recording, i.e., surface EEG/intracranial EEG using subdural or
depth electrodes/simultaneous recordings of both surface and intracranial
EEG data (see [5, 6, 12])

• the availability of additional physiological signals, like ECG

• the duration of EEG recordings

• the number of seizures recorded

• types of clinically manifest seizures

• data quality.

Data on recording type and the number of seizures during the recording period
are crucial for the applicability of statistical analyses. Data quality needs to be
indicated, e.g., by comments on the presence or absence of artifacts, gaps in
the continuity of recordings, reduced data quality due to factors like subdural
bleedings or other complications of intracranial recordings. Sampling frequen-
cies are of critical importance if high-frequency signals are to be analyzed. In
addition, the points in time when seizures occurred and their temporal distri-
bution are important depending on the characteristics of the algorithm to be
analyzed; e.g., it is problematic to apply algorithms working with long inter-
vention times and occurrence periods (see [10]) if there is dense clustering of
seizures.

There are other metadata which may be relevant but have not yet been analyzed
sufficiently. These include the following.

• The localization of recording electrodes: the topographical position of
intracranial electrodes may be of relevance for their possible use in
seizure prediction both in relation to the brain structures recorded from,
and in relation to, the epileptogenic area. Based on distinct anatomi-
cal connectivity, this may lead to differences in interdependencies of
EEG channels, directionalities of interactions and mutual information
exchange.

• The anatomical localization of seizure onset may have related implica-
tions.

• The morphology of electrographic seizure patterns may be related to mech-
anisms in seizure generation which are critical also for interictal–ictal
transitions.

• The state of vigilance at seizure occurrence may also be related to the dynam-
ics underlying seizure generation and has been shown to be of importance
for the selection of appropriate reference periods for certain prediction
algorithms [13].



20.5 Metadata on the Clinically Defined Epilepsy Syndrome 265

• The type and level of anti-epileptic medication and the speed of their changes
during the recording period may be a relevant factor influencing the sta-
tionarity of long-term EEG data and may thus influence the performance
of algorithms which critically depend thereon. Integration of daily dosages
may serve as a first approximation of active drug levels at binding sites.

20.5
Metadata on the Clinically Defined Epilepsy Syndrome

In addition to data characterizing the recording period and its circumstances,
clinical data characterizing the type of epilepsy may be of relevance, e.g., for
stratification of patient subgroups for certain types of analyses. These metadata
encompass:

• the epilepsy syndrome (e.g., mesiotemporal epilepsy, frontal lobe epilepsy)

• the underlying etiology (e.g., hippocampal sclerosis, cortical dysplasia)

• seizure types and semiology

• type of surgical resection following telemetry

• outcome following surgery.

Etiology and epilepsy syndrome may have relevant implications for the pro-
cess of epileptogenesis in general and for seizure generation in particular. Thus,
algorithms capturing particular properties of EEG dynamics may have different
performances depending on the individual aspects of interictal–ictal transitions re-
lated to the brain structure involved and on its pathological alteration. Seizure
types reflect not only local aspects related to overt symptoms but also the
propensity of the brain for various forms of propagation [14] and thus indi-
cate the balance between inhibition and excitation in synaptically connected brain
areas.

The surgical outcome serves as the gold standard for the correct identification
of the epileptogenic area and thus contributes to the description of electrode
positions in relation to seizure generators. This is of importance not only for
univariate measures applied either to focal or extrafocal electrode contacts, but
also for a multivariate analysis of interactions between the focus and extrafocal
areas.

Although the selection of seizure-free patients offers specific advantages regard-
ing the distinction between the epileptogenic zone and other brain areas, the
inclusion of patients not achieving seizure freedom following epilepsy surgery
and of patients with clear multifocal epilepsy may be of particular importance
regarding the future clinical use of seizure-prediction systems, as patients without
a surgical treatment option are particularly suitable as candidates for an application
of prediction systems.

Further data of possible relevance may include gender, age at the time
of recording, age at initial manifestation of epilepsy, the derived duration of
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epilepsy, and results from supplementary investigations such as functional
imaging.

20.6
Database Structure

For the purpose of data management and retrieval, a relational database structure is
suitable. This allows one to identify datasets based on certain features, e.g., seizure
number, distribution, presence or absence of subclinical electrographic patterns.
Additionally, it renders possible the stratification of patient subgroups according to
the localization of seizure onset, the underlying pathology, the type and topography
of electrodes or the postsurgical outcome.

More complex database structures may be useful if advanced types of anal-
yses are to be performed. Thus, in a current European database project, data-
driven analyses like semantic mining are planned, based on a data warehouse
architecture.

Even major epilepsy centers are generally not able to collect enough data to
support subgroup analyses in rigorously preselected patient groups, according
to statistical demands like out-of-sample testing of algorithmic performance.
Industrial companies thus use extended databases acquired at a number of



References 267

recording sites. Presently, both in the US and in Europe, there are ongoing
projects on extended databases using structures enabling multi-user access and
contributions.
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21
Beyond Prediction – Focal Cooling and Optical Activation
to Terminate Focal Seizures

Steven M. Rothman

21.1
Introduction

When the science of human seizure prediction and detection matures, there will
be a plethora of practical questions about how to best implement these powerful
techniques. While knowledge of the likelihood of an impending seizure would
of course be very significant, indeed empowering, for patients, it would be even
more desirable if some reliable method of seizure prevention could be rapidly
activated. The known antiepileptic effect of cooling makes local cortical cooling
one potential therapeutic strategy. Recent advances in the fabrication of small,
electric cooling devices (thermoelectric or Peltier) has raised the possibility of
incorporating an implantable cooling unit into a closed loop seizure detection
system. Another possible strategy for focal seizure prevention or termination
would be to combine a small, powerful ultraviolet light-emitting diode (UV LED)
with local administration of a caged version of the inhibitory transmitter γ-
aminobutryic acid (GABA). Seizure prediction could activate the LED, releasing
GABA to suppress focal paroxysmal activity. Support for both of these strategies
exists in a variety of experimental systems; adapting them for clinical use is the
next challenge.

21.1.1
Scope of the Problem

The end of the twentieth century produced remarkable advances in the under-
standing and treatment of many of the epilepsies. Scientific speculation that some
genetic epilepsies were caused by mutations in ion and voltage-gated channels
was validated by a series of landmark genetic discoveries. New anticonvulsants,
several with highly favorable therapeutic indices, were introduced. Sensitive mag-
netic resonance and positron-emitting based imaging tests that revealed the focal
etiology of many complicated, symptomatic epilepsies emerged and evolved very
rapidly. Finally, the once radical therapeutic option of surgical resection entered
the epilepsy mainstream.

Seizure Prediction in Epilepsy. Edited by Björn Schelter, Jens Timmer and Andreas Schulze-Bonhage
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Despite this progress, many patients with epilepsy have been left behind. The
focal cortical epilepsies have remained especially problematic. Accounting for up
to half of patients with poorly controlled seizures; focal and multifocal seizures
arising from the neocortex have proven extremely refractory to both conventional
anticonvulsant therapy and the newer surgical approaches. Even with guidance
from modern imaging techniques that allow functional anatomic correlation of
seizure onset with surface rendering of the neocortex, the surgical treatment
of cortical seizures is successful in less than 60% of cases [1]. There are at
least three reasons why surgical management of neocortical epilepsy is so diffi-
cult. First, conventional neurophysiological techniques frequently have difficulty
in localizing a patient’s seizures. Second, identification of the specific neuro-
logical function(s) residing in the seizure onset zone, essential for an accurate
prediction of adverse effects of resection, can be very difficult. Third the expecta-
tion that resection will leave a permanent neurological deficit precludes surgery
altogether.

21.1.2
Alternatives to Permanent Resection for Neocortical Epilepsy

A variety of invasive but non-destructive strategies have recently been employed
or proposed to reduce the frequency and severity of neocortical seizures. For the
past 15 years, vagal nerve stimulation (VNS) has been used for a subset of children
and adults with refractory epilepsy [2]. While clinical studies have validated its
efficacy, the overall reduction in seizure frequency with VNS approximates 50%.
This certainly represents an improvement in seizure control, but for many patients
the improvement in quality of life is insubstantial. There is some experimental
evidence that trigeminal nerve stimulation might provide better seizure control,
but as yet, there have been no human studies of this modality. Transcranial
magnetic stimulation for epilepsy has been described in several publications. The
initial reports were optimistic, but subsequent controlled prospective trials have
not shown significant reduction in seizure frequency [3]. There are also brain-slice
studies indicating that the direct application of a constant or DC electrical field can
diminish neuronal excitability and experimental seizure discharges [4].

There is limited experience with several variations of intermittent electrical
stimulation for human epilepsy. Recent publications have identified subsets of pa-
tients who benefited from intermittent hippocampal or thalamic stimulation [5,6].
These results are still too premature to allow definite conclusions. The most
sophisticated intervention under trial is a totally implantable, closed-loop feed-
back system for seizure detection and cortical stimulation to terminate focal
seizures. Using the same electrodes for both recording and stimulation, in con-
junction with a custom designed seizure-detection algorithm, this device has
been able to abruptly terminate seizures by delivering a burst stimulation lasting
about a tenth of a second [7]. At this time, the reliability of this device is be-
ing determined in prospective clinical trials at several North American epilepsy
centers.
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21.2
Cooling and the Brain

Another appealing, non-destructive strategy for terminating and possibly prevent-
ing focal seizures, is the application of focal cooling. There is an extensive literature
documenting that cooling reduces synaptic transmission in the mammalian brain,
and it should be possible to use new engineering technology to deliver very focal
cooling. The first descriptions of the central neurological effects of focal cooling
come from articles written by Stefani and Deganello at the end of the nineteenth
century [8, 9]. A decade later, the German physiologist Trendelenburg began a
systematic study of local hypothermia, investigating its effects on both brainstem
autonomic reflexes and the neocortex [10]. While lacking any cellular insights,
all three investigators concluded that cooling reduced neurological function at the
system level. Throughout the rest of the 20th century, physiologists continued to
use local cooling to investigate cortical and subcortical localization of specific brain
functions.

Information about the neurobiological effects of cooling advanced over the last
fifty years. Using intracellular recording at the frog neuromuscular junction, Katz
and Miledi showed that cooling reduced end-plate potentials, likely by diminishing
the probability of acetylcholine release from presynaptic terminals [11]. More
recent experiments in mammalian tissue culture and brain slices have shown that
cooling alters excitatory transmission by both pre- and post-synaptic mechanisms
[12]. Cooling can augment the magnitude of neuronal action potentials and
inhibits the sodium/potassium ATPase. Although the initial ATPase inhibition
and concomitant cell depolarization may elicit transient hyperexcitability, cooling
eventually reduces neuronal excitability. Our own recent observations indicate that
hypothermia rapidly reduces transmitter release from presynaptic vesicles and
suggest that this may be a dominant effect of rapid cooling on central neuronal
excitability [13].

The potential clinical utility of cooling for neurological disease has been discussed
for half a century. Fay began an extensive investigation of brain cooling in
1938 [14]. He suggested that either systemic hypothermia or local cooling of
the brain with cooled fluid circulating through a sealed metal capsule might be
an efficacious treatment for head trauma and intractable pain. He also thought
reducing brain temperature might inhibit tumor growth and tried intracranial
cooling for inoperable gliomas. More recent controlled studies have reported
benefits of cooling patients after acute head trauma or asphyxia. Interestingly,
the temperature reduction in these recent clinical reports is generally no more
than 4 ◦C, which would not be expected to have a very large effect on synaptic
transmission. This is also a much smaller drop than the cooling required to
terminate experimental seizures.

Physicians have been aware of a causal relationship between elevated temperature
and seizures since Hippocrates. Moreover, numerous in vitro and in vivo exper-
imental epilepsy studies have consistently demonstrated that cooling diminishes
paroxysmal bursting and can reduce or stop seizure activity. There are encouraging
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clinical reports suggesting the utility of brain cooling for human seizures as well.
A quarter of a century ago, two separate clinical investigations documented the
efficacy of cooling in the therapy of a limited number of patients with acute,
prolonged seizures or chronic, recurrent seizures. The initial paper showed that
externally cooling (31–36 ◦C) six patients with refractory status epilepticus stopped
seizures in five of them [15]. The second paper described 25 patients, ranging in
age from 8 to 46, who had frequent major motor seizures poorly controlled on
chronic anticonvulsant therapy [16]. While under general anesthesia, they were
placed in an enclosed chamber and chilled to 29 ◦C with cold air. At that point,
bilateral frontal burr holes were opened and the subarachnoid space or ventricles
were irrigated with iced saline, which reduced cortical surface temperature below
24 ◦C in 21 of the patients. A total volume of 500–20 000 cc of saline was infused
into the patients, who were slowly recovered from anesthesia. Of the 15 patients
followed for one year, eleven showed a marked reduction in seizure frequency,
including four who had been seizure free.

Two more recent descriptions of direct cooling of the human brain during
operative neurosurgical mapping have confirmed that acutely lowering cortical
temperature will terminate paroxysmal discharges [17, 18]. In these cases, focal
spikes abruptly stopped when iced saline was applied to the neocortex in the
operating room. Both sets of studies have encouraged the development of more
convenient methods of brain cooling for epilepsy.

21.2.1
Methods for Cooling

The inconvenience of cooling with circulating cold water or conventional refrig-
eration devices has precluded the application of cooling for the chronic therapy
of epilepsy. However, improvements in thermoelectric devices and the necessary
supporting technology makes it essential to re-evaluate cooling as a therapy for
some forms of epilepsy. Thermoelectric devices exploit Peltier’s 1834 observation
that a temperature gradient develops at the junction between two dissimilar con-
ductors when an electric current is applied across them. The discovery in the 1920s
that synthetic semiconductors were superior to metals as thermoelectric elements,
hastened progress in this field.

The development of modern semiconductors, typically alloys of bismuth, tel-
lurium, selenium, and antimony, has made possible the fabrication of small, light
thermoelectric modules or Peltier devices, only a few mm in length and width and
1.5 mm thick (Figure 21.1a). In these modules, pairs of N- and P-type semicon-
ductors are connected electrically in series and thermally in parallel, between two
ceramic plates, to form a wafer. The newest thermoelectric devices are fabricated
with thin-film technology developed for the microelectronics industry and are less
than 200 µm thick. They have up to ten times the heat-pumping capability of
conventional devices, making them ideal for medical devices (Figure 21.1b).

Thermoelectric devices are capable of generating temperature differentials of
70 ◦C, but for these differentials to result in cooling, heat must be efficiently
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Fig. 21.1 Photographs of thermoelectric
or Peltier devices. (a) Commercially avail-
able Peltier device showing the individual
semiconductors connecting the two ceramic
wafers. Scale below is in mm. (b) The figure
shows a prototype thin-film device on top of
a conventional TEC. (c) Cortical cooling sig-
nificantly reduces the duration of seizures.

Cooling shortened the duration of the entire
group of cooled seizures as well as the first
cooled seizure in each animal. Activation of
the Peltier had no effect on seizure duration
when the device did not directly contact the
cortex. Cooled seizure durations were sig-
nificantly different from both control groups
(p < 0.001).

removed from the hot side. For most of our work, we have attached the hot side
of the device to a copper rod, which both removes heat and acts as a convenient
holder for a manipulator.

21.2.2
Results of Cooling Experimental Seizures

In 1999, we became aware of the attractive features of commercially available
thermoelectric devices and began experiments to determine whether they could
terminate acute seizures. Initially, we induced seizures in rat hippocampal brain
slices by perfusing them with 4-aminopyridine, a blocker of voltage-gated potassium
channels and a well-established convulsant. We positioned the slices on the surface
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of a thermoelectric device that had been machined into a plexiglass chamber.
In this configuration, we were able to rapidly cool the slices at the onset of
electrographic ictal-like behavior. We found that cooling to 20 ◦C quickly terminated
this paroxysmal activity and also reversibly inhibited evoked field potentials [19].

These positive in vitro results encouraged us to attempt to suppress ictal activity
in vivo. We found that we could reliably induce focal seizures in halothane-
anesthetized rats with a 4-aminopyridine solution. The drug was inserted 0.5 mm
below the pial surface of the motor cortex using a micropipette. The animals
developed recurrent focal seizures within 20 minutes and continued to have elec-
trographic seizures for approximately 2 hours. Untreated seizures lasted between
60 and 80 seconds. When we allowed a thermoelectric device to directly con-
tact the neocortex immediately above the injection site and activated cooling to
20 ◦C at seizure onset, seizure duration was reduced to approximately 7 seconds
(Figure 21.1c) [20].

This rapid effect is due to the local cooling, because the thermoelectric device
did not influence seizure duration if it was not in direct contact with the cortical
surface. In this preparation, there was a progressive decrease in seizure duration
below 26 ◦C, but no difference between 22 and 20 ◦C [21]. We have not yet tried
temperatures below 20 ◦C. We may even be overestimating the degree of cooling
required for seizure termination. Another group has reported that paroxysmal
discharges in a slice model of epilepsy were eliminated by rapid temperature
reductions of only 1 ◦C [22].

We went on to develop a frequency-based seizure detection algorithm for the
4-aminopyridine seizures, which allowed us to use a closed-loop system to abort
seizures. In order to minimize false positives, we set a relatively high threshold
before cooling was activated. In these circumstances, our closed-loop system was
as effective in terminating seizures as manual activation. Had we decided to accept
more false positives, we could have initiated more rapid cooling and further reduced
seizure duration [21].

Additional experiments have revealed other attractive aspects of cooling for focal
seizures. Using a small thermocouple inserted into a 30 g needle, we mapped the
cortex below our thermoelectric device and showed that cooling extends only about
4 mm below the surface. Thus, its effect should be localized to just a small region of
neocortex below the pia. Recent work has explored the possibility of brain damage
induced by local cooling. Thus far, we have not seen any evidence that cooling as
low as 5 ◦C for 2 hours produces neuronal loss or activates apoptotic pathways [23].
While there is minimal gliosis close to the region of cortical contact with the
Peltier, it is similar to the response provoked by any foreign body and cannot be
attributed to cooling. Interestingly, when brain slices obtained from transgenic
mice expressing the Green Fluorescent Protein were cooled to 5 ◦C, there was
transient, but completely reversible blebbing of dendrite shafts and loss of spines.
This is probably an effect of ion pump inhibition, because other investigators
have made similar observations after treating brain slices with Na+/K+ ATPase
inhibitors. We have also failed to observe any neuronal loss in cat neocortex,
after 7–10 months of intermittent cooling during neurophysiological experiments.
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These results make us optimistic that the effect of cooling will be exquisitely focal
and well tolerated.

A series of more recent experiments demonstrated that cooling is capable of
reducing the severity and length of other types of focal seizures. Both the grade
and after discharge duration of kindled rat hippocampal seizures were reduced
by cooling to between 23 and 26 ◦C with cold saline flowing through thin copper
tubing positioned next to the dorsal hippocampus [24]. A limited set of observations
on a monkey have verified that our thermoelectric device is capable of inhibiting
function in the primate neocortex. When our thermoelectric device was placed in
direct contact with the pia on the surface of the hand region of the precentral
gyrus, there was a consistent, reversible impairment in skilled finger movements
associated with a reduction in surface temperature. This indicates that the small
thermoelectric devices have sufficient power to cool primate cortex. Of note, even
with cooling to 10 ◦C, the impairment was not instantaneous and did not completely
paralyze hand movements.

In order to move ahead with the design of a fully implantable cooling device
for human focal epilepsy, we have begun to address the problem of heat dissipa-
tion from the hot side of thermoelectric devices. While a copper rod has worked
well for experiments in anesthetized or immobilized animals, a more compact
device will be required to tranfer heat from a clinical device. There is an exten-
sive literature describing heat pipes, which are hollow, evacuated, wicked tubes
that rapidly equilibrate temperature by allowing a liquid to alternately evaporate
and recondense under reduced atmospheric pressure. Our engineering colleagues
have designed a thin, bendable, laminar heat pipe composed of outer layers of
copper foil and an inner layer of sintered copper columns sandwiched between
two layers of sintered copper [25]. The charging fluid, water, flows between
the copper columns. The mechanical properties of this heat pipe indicate that
it should be capable of diffusing sufficient heat from a thermoelectric device
in contact with the cortex to maintain a cold-side temperature of 20 ◦C with-
out heating the adjacent brain above 38 ◦C. We envision positioning a similar
heat pipe between the hot side of a thermoelectric device and dura, skull, or
scalp, so that heat can be efficiently transferred to one of these highly vascular
compartments.

21.2.3
Future Plans for Cooling

The most critical question at this time is the degree of cooling required to
terminate or prevent human focal seizures; and rodents are unlikely to inform
us about this question. There is no rodent model of chronic focal epilepsy that
reliably reproduces the human condition, and the 4-AP model, which we have
used in our studies, is much more severe than even the most refractory human
epilepsy. The rats typically have 60–80 s seizures every 2–3 min, which would be
unrealistic for almost all human epilepsies. Human seizures would be expected
to be much less frequent. It seems likely, therefore, that rodent focal seizures
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will require a much larger temperature reduction than human seizures. This
information is critical because the required degree of cooling will govern the
current required to power the thermoelectric device. Moreover, the degree of
cooling will determine the amount of heat that has to be dissipated through the
heat pipe to the vasculature.

We believe that the most efficient way to sort this out will entail fabricating a
cooling device that utilizes cold saline rather than a thermoelectric device. The
device would combine a conventional silastic grid used for invasive monitoring
and a bladder through which cold saline flows. After preliminary testing in a
large animal to verify safety and cooling ability, the device could be temporarily
implanted in focal seizure patients during monitoring, prior to surgical resection.
It would permit determination of the degree of cooling required to stop seizures
without having to cope with heat dissipation. Once the cooling parameters have
been better defined, it will be possible to rationally design an implantable device
using thermoelectric technology.

There are several clear obstacles and objections that need to be addressed before
focal cooling can be used to treat human epilepsy. First, the convolutions of the
human brain keep approximately two-thirds of the neocortex buried in sulci and
inaccessible to surface cooling. However, it should still be possible to cool portions
of the substantial area of exposed cortex that are responsible for seizure generation.
In addition, cooling the lip of cortical sulci may block the spread of seizures arising
within the sulci, a suspected mechanism of seizure generalization. It should even
be feasible to connect thin, flexible heat pipes to thermoelectric devices to cool
structures deeper in the brain.

Second, cooling may be as disruptive to normal brain function as some seizures.
We are optimistic that there may be a temperature range that separates seizure
control from disruption of normal cortical function. The results of Bakken and
colleagues, that cooling below 10 ◦C over eloquent cortex did not produce a complete
anomia or non-fluent aphasia, support this hope [26].

Third, while we are concerned that the current requirements for present com-
mercial thermoelectric devices exceed an ampere, the short-duty cycle may allow
these devices to operate for long periods without recharge or replacement. More-
over, improvements in battery life and thin-film thermoelectric design, should soon
make it possible to generate more efficient devices.

Fourth, while there is presently no fully validated algorithm for seizure detection
or prediction, other sections of this monograph suggest that these remain attainable
goals. Variations of these algorithms are currently undergoing trials in devices using
either an external or implanted detection system linked to electrical stimulation.
There is nothing about these systems that would preclude replacing stimulation
with cooling as the efferent arm of the device.

Full implementation of cooling as a clinical therapy will still require further
research. However, given the steady neurobiological progress over the last five
years and the continuous progress in many phases of engineering, it would be
surprising if some investigational application of cooling for epilepsy management
was not available by the end of the decade.
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21.3
Focal Uncaging for Epilepsy

We have also begun investigating the potential of small, optical devices to suppress
the abnormal neuronal activity that is the concomitant of focal epilepsy. There
is already a precedent for thinking along these lines. A California laboratory has
modified the genes for potassium and glutamate-gated channels to confer light
sensitivity to neurons [27]. However, in order for light to modify electrical activity,
the altered gene has to be transfected into neurons. Nonetheless, investigators are
already suggesting the possible clinical utility of this technology and it is being
energetically investigated [28].

Rather than introduce new channels into neurons, we are exploring the possibility
of using caged compounds to modulate neuronal activity [29]. This decision was
based upon three recent developments: 1) the availability of at least one new caged
GABA; 2) new information about tonic, GABAA receptors; and 3) new developments
in UV LED technology. The new caged GABA is 4-[[(2H-1-benzopyran-2-one-7-
amino-4-methoxy)carbonyl]amino] butanoic acid or BC204 [30]. This compound
releases GABA when activated by relatively long wavelength ultraviolet radiation,
350 nm. Unlike other commercially distributed caged neurotransmitters, it is
extremely stable in physiological preparations and lacks direct effects on GABAA

receptors. When tested in hippocampal slices, it rapidly generated GABA when
activated by millisecond flashes of a high intensity arc lamp.

The partial elucidation of tonic GABAA receptors has altered our understanding
of chemical inhibition in various parts of the brain. These receptors are located
away from the synaptic cleft and appear to be activated by GABA that spills
over from synapses or is present in the brain extracellular space at very low
concentration [31, 32]. They are unique in containing the α5 or δGABAA receptor
subunits, possessing high affinity for GABA, and lacking desensitization. This is
relevant because the ambient concentration of GABA is in the low µM range, in
contrast to synaptic GABA levels that approach mM concentration. Furthermore,
the tonic GABA current is larger in animal epilepsy models and probably contributes
more to inhibitory current flux than the phasic GABA current.

Advances in UV LED technology may allow us to uncage BC204 or analogs to
activate these tonic GABAA receptors [33]. LEDs are semiconductor optoelectronic
devices that emit incoherent narrow-spectrum light when a voltage is placed
across them. Over the past two decades, semiconductor crystal-growing methods
utilizing high-purity metallo-organic compounds have facilitated the fabrication
of UV and visible LEDs. Nichia, the Japanese company with the most successful
technique for LED crystal fabrication, has recently introduced highly efficient
LEDs, capable of emitting light with wavelengths in the near-ultraviolet range.
The quantum efficiency of the newer UV LEDs (the ratio of the number of
photons of light emitted per second to the number of electrons injected per second
into the LED), is around 30%, far higher than prior crystals. These new devices
will significantly reduce heat production and should enable the development of
implantable LEDs.
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Fig. 21.2 Uncaging as a possible strategy
for focal epilepsy. (a) Ultraviolet light emit-
ting diode (UV LED) in ‘packaging’. The
actual diode is the central square crystal.
Calibration line is 1 mm. (b) UV illumina-
tion for 4 s in the presence of BC204 (hv

bar) stops rapid firing of cultured neurons
made hyperexcitable by removal of extracellu-
lar magnesium. (c) Under otherwise identical
circumstances, illumination had no effect
when BC204 was not present in solution.

21.3.1
Early Results with Uncaging

Our initial experiments were designed to determine whether a Nichia UV LED
(Figure 21.2a) would provide sufficient radiant power to uncage a detectable level
of GABA from BC204 in dissociated hippocampal neurons. Neurons were voltage
clamped at −60 mV in the presence of 30 µM BC204 and illuminated with the
power supply set to 200 mA for durations ranging between 1 and 15 seconds. This
level of illumination, applied for as little as 1 s, led to a readily detectable current.
When the exposure was lengthened, the amplitude of the current increased. A
4 s illumination generated a near-maximal current and was used in most of the
subsequent experiments.

Having established that the UV LED could activate detectable currents in the
presence of BC204, subsequent experiments examined GABA-mediated concen-
tration response relations. We bath-applied GABA at 1, 4, 7 and 10 µM, to obtain
a GABA response curve for low concentrations of GABA, the range of interest for
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these experiments. We then bath-applied BC204, first at 30 µM, and in a subse-
quent set of experiments at 10 µM, and measured the inward currents produced
by 4 s illumination with decrementing UV LED power. The inward currents at
each level of illumination and BC204 concentration were normalized to the current
produced in the same cell by bath perfusion of GABA (10 µM). There was a clear
relationship between the strength of illumination and the magnitude of the current
elicited by uncaging BC204. When the BC204 concentration was 30 µM, LED
currents ≥ 150 mA gave a response larger than the response produced by bath
perfusion of 10 µM GABA, suggesting that a 4 s light application was capable of
uncaging more than one-third of the BC204 in the vicinity of the recorded neuron.
No current response was seen in any neuron in the absence of BC204. Combining
the GABA and BC204 concentration responses showed that, in the presence of
30 µM BC204, a 25 mA LED current evoked neuronal currents corresponding to
about 4 µM GABA.

Picrotoxin reduced the BC-204 induced inward currents by over 90% (p = 0.013
by paired t-test), establishing that GABA was the responsible ligand. Because caged
compounds can act as antagonists at the targeted receptor [34, 35], responses
of individual neurons (n = 13) to GABA (3 µM) in the presence and absence of
BC204 (30 µM), were compared to determine if BC204 antagonized GABA in
the absence of illumination. We did not observe any measurable antagonism of
GABA by BC204, with the latter present in ten-fold excess (p = 0.126 by paired
t-test).

21.3.2
Uncaging BC204 Suppresses ‘Seizure-like’ Activity

These preliminary experiments verified that our UV LED could induce robust
GABAergic currents, even with only 10 µM BC204. There are a large number
of reports of spontaneous paroxysmal, ‘seizure-like’ activity in cultures of central
neurons, and this activity can be amplified if cultures are exposed to an extracellular
solution lacking magnesium [36]. [37] Therefore, subsequent experiments were
focused on examining the effects of uncaging BC204 on ‘seizure-like’ activity which
appears when magnesium is removed from the perfusate.

When recording from cultured hippocampal neurons in the presence of ex-
tracellular calcium (2 mM) and magnesium (1 mM), there is often a low level
of spontaneous activity. When the magnesium is removed, there is a dramatic
increase in cell firing (Figure 21.2b,c). In some neurons, the firing is tonic and
rapid enough to depolarize the neuron, while other cells develop phasic bursting,
with brief periods when the cell returns to resting potential. Occasionally, firing
rates are unaffected, but large increases in synaptic activity that destabilize the
resting potential are observed. This complex behavior has been recognized previ-
ously by others and has been the focus of recent quantitative analyses [36,38]. The
spontaneous activity does not necessarily revert back to control levels when the
magnesium concentration is normalized, because prolonged excessive firing can
induce a permanent state of hyperexcitability in culture [39, 40].
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When BC204 was added to the zero magnesium perfusate, there was no difference
in the pattern of neuronal activity. However, when the UV LED was activated, there
was a reduction or cessation of firing and the cell membrane potential stabilized
(Figure 21.2b). The reduction in firing lasted for 10–20 s, likely reflecting the
time required for the uncaged GABA to diffuse away from the recording site.
Illumination in the absence of BC204 failed to affect the firing rate (Figure 21.2c).
Similarly, if exogenous GABA (3–10 µM) was added while the culture was bathed
in zero magnesium, there was a marked reduction in firing and synaptic activity
(not shown).

Although the effects of activated BC204 or GABA on seizure-like activity were
qualitatively obvious, we developed a method to quantify our observations. We
allowed 1–2 minutes for solution changes, and, in most experiments, illuminated
for 4 s, just at the onset of a 60 s recording period. We examined the 10 s epoch that
included the last 2 s of BC204 illumination plus the following 8 s and measured
the number of action potentials and the standard deviation of the baseline. We
measured the same parameters in the final 10 s of each epoch, which allowed 40 s
for any effect of uncaging to dissipate. When the same manipulation was repeated
for a single cell, the measurements were averaged. When we examined 156
randomly selected epochs, we found that the two measures correlated (r2 = 0.66).

When cultures lacking BC204 were illuminated with the UV LED, in standard or
zero magnesium extracellular solution, there was no alteration in the firing pattern
or baseline standard deviation. However, when we exposed the cultures to zero
magnesium extracellular solution containing 30 µM BC204, illumination produced
a marked decrease in the standard deviation of the baseline and the number of
action potentials. This effect was evident with LED currents from 100–200 mA.
When we reduced the BC204 concentration to 10 µM, but not lower, we found an
almost identical result. In a subsequent set of experiments, we further reduced the
current powering the UV LED to 25–100 mA and prolonged illumination to 8 s.
We found that 100 and 50, but not 25 mA, significantly reduced both spike number
and baseline standard deviation (p < 0.05 for spike number and baseline standard
deviation with 50 and 100 mA v non illuminated).

When cultures were exposed to picrotoxin in the presence of BC204 (30 µM) and
the absence of magnesium, 200 mA of UV LED current had no effect on spikes or
baseline standard deviation (n = 5 cells, data not shown). Direct addition of GABA
to zero magnesium perfusate suppressed paroxysmal activity. At 10 µM GABA,
both baseline standard deviation and spike number were significantly reduced
(p < 0.02 v zero magnesium for both parameters; n = 9 cells). At 3 µM, only the
spike number reduction was significant (p < 0.01). There was no detectable effect
of 1 µM GABA on either parameter.

21.3.3
Future Plans for in vivo Uncaging

In order to adapt the Nichia UV LEDs for in vivo use, they will be reconfigured
and incorporated into in situ arrays tailored for the particular spatial requirements
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of the mammalian brain. Our ultimate goal is to combine a UV LED and BC204
to generate low levels of ambient GABA to activate tonic GABAA receptors in
the cortex. It should be possible to implant a single LED or LED array close
to the cortical surface above an epileptic focus. BC204 would then be locally
applied into the subdural or subarachnoid space beneath the LED and allowed to
passively penetrate into the cortex [41]. The LED could be powered at set intervals
to continually suppress electrical activity in the underlying cortex. Alternately, it
could be controlled by closed-loop feedback and powered only at time of seizure
prediction, as described in other chapters in this volume.

We recognize that there are several practical issues that need to be addressed
before this technology can be translated to clinical medicine. First, we need to
optimize the configuration of the UV LED so that the maximum optical power is
directed into the brain slice or cortex. There are ways to distribute several small UV
LEDs over the intact cortical surface so that several cm2 of tissue can be illuminated.
Second, we need to establish that the UV LED has sufficient power to penetrate
into the intact nervous system and uncage BC204. Based upon preliminary data,
we anticipate that the light intensity will decrease by about 50% for every 200 µm
of tissue thickness. We will need to determine the appropriate combination of light
intensity and BC204 delivery that generates enough GABA to reduce paroxysmal
activity.
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22.1
Introduction

Neurostimulation is an emerging treatment for neurological diseases. Electrical
pulses are administered directly to or in the neighborhood of nervous tissue in
order to manipulate a pathological substrate and to achieve a symptomatic or
even curative therapeutic effect. Different types of neurostimulation exist mainly
depending of the part of the nervous system that is being affected and the way in
which this stimulation is being administered.

Electrical stimulation of the tenth cranial nerve or vagus nerve stimulation (VNS)
is an extracranial form of stimulation that was developed in the eighties and
is currently routinely available in epilepsy centers around the world. Through
an implanted device and electrode, electrical pulses are administered to the
afferent fibers of the left vagus nerve in the neck. It is indicated in patients
with refractory epilepsy who are unsuitable candidates for epilepsy surgery or
who have had insufficient benefit from such a treatment [1]. Another form of
extracranial neurostimulation consists of transcranial magnetic stimulation (TMS).
A coil that transmits magnetic fields is held over the scalp and allows a non-
invasive evaluation of separate excitatory and inhibitory functions of the cerebral
cortex. In addition, repetitive TMS (rTMS) can modulate the excitability of cortical
networks [2]. This therapeutic form of TMS is currently being investigated as a
treatment option for refractory epilepsy but it has not been widely used, unlike
VNS.

Intracerebral neurostimulation requires accessing the intracranial nervous sys-
tem as stimulation electrodes are inserted into intracerebral targets for deep brain
stimulation (DBS) or placed over the cortical convexity for cortical stimulation (CS).
These modalities of neurostimulation are not novel for neurological indications.
Some have been extensively used, e.g., for movement disorders and pain [3, 4].
Moreover, several new indications such as obsessive compulsive behavior and
cluster headache are being investigated with promising results [5, 6]. In the past
DBS and CS of different brain structures such as the cerebellum, the locus
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coeruleus and the thalamus have already been performed. This was done mostly
in patients with spasticity or psychiatric disorders who also had epilepsy but
the technique was not fully explored or developed into an efficacious treatment
option [7–10]. The vast progress in biotechnology along with the experience in
other neurological diseases in the past ten years has led to a renewed interest in
intracerebral stimulation for epilepsy. A few epilepsy centers around the world
have recently re-initiated trials with deep-brain stimulation in different intracere-
bral structures such as the thalamus, the subthalamic nucleus and the caudate
nucleus [11–15].

This manuscript will focus on vagus nerve and hippocampal stimulation as a
treatment for epilepsy. For both treatment modalities unresolved clinical and basic
research questions require further attention.

The precise mechanism of action by which VNS exerts its antiepileptic effect
is unknown. Optimal candidates for VNS have not been identified. About one-
third of patients undergoing VNS will eventually not benefit from the intervention.
Increased insight into the mechanism of action may help to identify responders and
increase clinical efficacy. The reverse reasoning holds true as well. Identification
of predictive factors for a positive clinical outcome may further elucidate the
mechanism of action of VNS.

DBS is a more recently explored field in epilepsy. Compared to VNS it is a
more invasive treatment option. As for VNS, the precise mechanism of action
and the ideal candidates for this treatment option are currently unidentified.
Moreover, it is unknown which intracerebral structures should be targeted to
achieve optimal clinical efficacy. Two major strategies can be distinguished. One
approach is to target crucial central nervous system structures that are considered
to have a ‘pacemaker’, ‘triggering’ or ‘gating’ role in the epileptogenic networks
that have been identified, such as the thalamus or the subthalamic nucleus [16].
Another approach is to interfere with the ictal onset zone itself. This implies the
identification of the ictal onset zone, a process that sometimes requires implantation
with intracranial electrodes [17]. At Ghent University Hospital this latter approach
was chosen.

For both VNS and DBS there is an essential and specific issue related to the
fact that these treatments require the use of electronic devices. Electrical pulses
are defined by different characteristics and the way they are applied to human
tissue makes use of certain stimulation parameters (output current, frequency,
pulse width, duty cycle) that have to be decided upon. These parameters are
mainly dependent on what is known to be safe and, secondly, on what is believed
to be potentially efficacious. For VNS so-called ‘optimal’/‘standard’ stimulation
parameters have been identified, mainly on the basis of animal experiments [18].
The fairly large number of non-responders is a possible reflection of the fact
that different stimulation paradigms using different combinations of stimulation
parameters may be superior.

For DBS very little information on efficacious stimulation parameters is available
from human or animal epilepsy experiments. From the large number of studies
in patients with movement disorders, ranges of safe stimulation parameters have
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been identified [19]. Potentially efficacious stimulation parameters were deducted
from previous DBS studies in other intracerebral targets, and applied in the pilot
trial in patients [7–15].

22.2
Vagus Nerve Stimulation

22.2.1
Clinical Efficacy and Safety

22.2.1.1 Randomised Controlled Trials
The first descriptions of the implantable VNS TherapyTM system for electrical
stimulation of the vagus nerve in humans appeared in the literature in the early
ninetes [20, 21].

At the same time, initial results from two single-blinded pilot clinical trials
(phase-1 trials EO1 and EO2) in a small group of patients with refractory complex
partial seizures who had been implanted since November 1988 in three epilepsy
centers in the USA, were reported [21–25]. In 9/14 patients, treated for 3–22
months, a reduction in seizure frequency of at least 50 % was observed [21]. One
of the patients was seizure-free for more than seven months. Complex partial
seizures, simple partial seizures as well as secondary generalized seizures, were
affected [23]. It was noticed that a reduction in frequency, duration and intensity of
seizures lagged 4–8 weeks after the initiation of treatment [22].

In 1993, Uthman et al. reported on the long-term results from the EO1 and
EO2 study [26]. Fourteen patients had now been treated for 14–35 months. There
was a mean reduction in seizure frequency of 46 %. Five patients had a seizure
reduction of at least 50 %, of whom two experienced long-term seizure freedom. In
none of the patients did VNS induce seizure exacerbation. In the meantime, two
prospective multicenter (n = 17) double-blind randomized studies (EO3 and EO5)
were started, including patients from centers in the USA (n = 12), Canada (n = 1)
as well as in Europe (n = 4) [27–31]. In these two studies, patients over the age of 12
with partial seizures were randomized to a HIGH or LOW stimulation paradigm.
The parameters in the HIGH stimulation group (output: gradual increase up to
3.5 mA, 30 Hz, 500 µs, 30 s on, 5 min off) were those believed to be efficacious,
based on animal data and the initial human pilot studies. Because patients can
sense stimulation, the LOW stimulation parameters (output: single increase to
point of patient perception, no further increase, 1 Hz, 130 µs, 30 s on, 3 hours
off) were chosen to provide some sensation to the patient in order to protect
the blinding of the study. LOW stimulation parameters were believed to be less
efficacious and the patients in this group represented an active control group. The
results of EO3 in 113 patients were promising with a decrease in seizures of 24 %
in the HIGH stimulation group versus 6 % in the LOW stimulation group after
three months of treatment [28–30]. The number of patients was insufficient to
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achieve Food and Drug Administration (FDA) approval leading to the EO5 study in
the USA including 198 patients. 94 patients in the HIGH stimulation group had a
28 % decrease in seizure frequency versus 15 % in patients in the LOW stimulation
group [31].

22.2.1.2 Clinical Trials with Long-term Follow-up
The controlled EO3 and EO5 studies had their primary efficacy end-point after 12
weeks of VNS. Patients who ended the controlled trials were offered enrolment
in a long-term (1–3 years of FU) prospective efficacy and safety study. Patients
belonging to the LOW stimulation groups were crossed-over to HIGH stimulation
parameters. In all published reports on these long-term results, increased efficacy
with longer treatment was found [32–36]. In these open extension trials the
mean reduction in seizure frequency increased up to 35 % at one year and
up to 44 % at two years of FU. After that, improved seizure control reached a
plateau [35].

In the following years, other large prospective clinical trials were conducted in
different epilepsy centers worldwide. In Sweden, long-term follow-up in the largest
patient series (n = 67) in one center not belonging to the sponsored clinical trials at
that time, reported similar efficacy rates with a mean decrease in seizure frequency
of 44 % in patients treated up to five years [37]. A joint study of two epilepsy
centers in Belgium and the USA included 118 patients with a minimum follow-up
duration of six months. They found a mean reduction in monthly seizure frequency
of 55 % [38]. In China a mean seizure reduction of 40 % was found in 13 patients
after 18 months of VNS [39].

An open-label retrospective study evaluated long-term outcome in seven different
epilepsy centers in Belgium. 138 patients with a follow-up of at least 12 months had
an overall reduction in mean monthly seizure frequency of 51 % and a responder
rate of 59 % [40].

At Ghent University Hospital successful treatment of status epilepticus (SE)
with VNS was reported [41]. A seven-year-old girl presented with a refractory
non-convulsive SE. A vagus nerve stimulator was placed after 11 days of thiopental-
induced coma. Electroencephalography showed normalization one week following
the start of VNS and she experienced a sustained seizure-free outcome after
a follow-up of >13 months. A few case-reports describing the use of VNS for
refractory SE in pediatric and adult patients are available in the literature. Malik
et al. reported on three children with pharmacoresistant SE who were successfully
treated with VNS [42]. It was not specified whether the status was convulsive
or non-convulsive in these patients. Winston et al. reported a case of a 13-year
old boy in whom VNS interrupted a convulsive SE immediately after stimula-
tion was started [43]. Patwardhan et al. described a case of a 30-year old man
with medically intractable seizures due to severe allergic reactions to multi-
ple AEDs with subsequent evolvement into refractory SE. He underwent VNS
treatment after nearly nine days of barbiturate-induced coma. Stimulation was
initiated in the operating room. In the following days EEG revealed resolution of
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previously observed periodic lateralized epileptiform discharges with the stimula-
tor programmed at 1 mA and a duty cycle of 30 s on and 3 min off. The patient
became seizure-free [44]. Zimmerman et al. reported on three adult patients in
whom refractory non-convulsive SE due to AED withdrawal was treated with
VNS. After implantation of the device, stimulation output was rapidly increased
to 3 mA in the three patients. The time to termination of the SE was 3–5
days [45].

22.2.2
Safety, Side-effects and Tolerability

Safety concerns with regard to VNS treatment can be approached from different
angles. As the device needs to be implanted, a surgical intervention is required. The
effects of delivering current to nervous tissue need to be considered as this might
provoke changes in innervated organs and result in acute or chronic side-effects.
Patients with refractory epilepsy are often young people. The implanted device and
wires have to be examined for MRI compatibility.

The classical surgical technique has been described in detail by several authors
[46–48]. Cosmetic side-effects have already been improved since the production
of the smaller Model 101 and will be greatly improved once the Model 103
Generator Demipulse and Model 104 Generator Demipulse Duo become widely
available.

22.2.2.1 Ramping up and Long-term Stimulation
For therapeutic purposes, VNS aims at stimulating vagal afferents. There are
widespread connections from the vagus nerve to the central nervous system.
Through these connections efficacious stimulation parameters may also in-
duce other central nervous system side-effects. Moreover, selectively stimulat-
ing efferents is difficult and approximately 20 % of the fibers in the cervical
part of the vagus nerve are efferent fibers. These fibers innervate thoracoab-
dominal organs, which explains the potential serious side-effects when these
fibers are stimulated [29]. Certain side-effects related to undesired stimulation
of nerve fibers might be immediately perceptible by the patient. The main
efferent innervation of the vagus nerve serves to monitor and modulate vis-
ceral activity. These autonomic processes are usually not perceived by the
patient. There may also be side-effects specifically related to chronic stimula-
tion that will cause symptoms and become clinically apparent only after long-term
treatment.

The most prominent and consistent sensation in patients when the vagus
nerve is stimulated for the first time, even at low output current levels, is a
tingling sensation in the throat and hoarseness of the voice. The tingling sen-
sation may be due to secondary stimulation of the superior laryngeal nerve
that branches off from the vagus nerve superior to the location of the im-
planted electrode, but travels along the vagus nerve in the carotid sheath [49].
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The superior laryngeal nerve carries sensory fibers to the laryngeal mucosa.
Stimulation of the recurrent laryngeal nerve that branches off distally from the
location of the electrode and carries motor (Aα) fibers to the laryngeal muscles
causes the stimulation-related hoarseness [50, 51]. Fiberoptic laryngoscopy and
videostroboscopic examination have shown left vocal cord adduction (tetanic con-
traction) during stimulation at 30 Hz or higher [51–55]. These stimulation-related
side-effects are dose dependent, which means that higher amplitudes, higher fre-
quencies and wider pulse widths are associated with more intense sensations and
voice changes [26].

With regard to side-effects related to stimulation of vagal efferents, the effect on
heart rate has been a major concern. The stimulation electrode is always implanted
on the left vagus nerve, which is believed to contain fewer sinoatrial fibers than the
right.

In the long-term extension trials, the most frequent side-effects were hoarse-
ness in 19 % of patients and coughing in 5 % of patients at two years’ follow-up;
shortness of breath in 3 % of patients at three years [35]. There was a clear
trend towards diminishing side-effects over the three-year stimulation period.
98 % of the symptoms were rated mild or moderate by the patients and the
investigators [56]. Side-effects can usually be resolved by decreasing stimula-
tion parameters. Central nervous system side-effects, typically seen with AEDs,
were not reported. After three years of treatment, 72 % of the patients were
still on the treatment [35]. The most frequent reason for discontinuation was
lack of efficacy. Holter monitoring in a sample of patients of the EO4 study
showed no clinically symptomatic changes. Pulmonary function testing was
performed in 124 patients with no change between baseline and long-term
treatment [34].

Despite the fact that the initial studies showed no clinical effect on heart rate,
occurrence of bradycardia and ventricular asystole during intra-operative testing of
the device (stimulation parameters: 1 mA, 20 Hz, 500 µs, 17 s) have been reported
in a few patients. None of the reported patients had a history of cardiac dysfunction,
nor did they show abnormal cardiac testing after surgery. Tatum et al. reported on
four patients who experienced ventricular asystole intraoperatively during device
testing [57]. In three patients, the implantation procedure was aborted. In one
patient a rechallenge of stimulation with incremental increases from 0.25 to 1 mA
did not reveal a reappearance of bradycardia. Implantation was completed and
no further cardiac events were noticed after the start of VNS. Asconape et al.
reported on a single patient who developed asystole during intra-operative device
testing. After removal of the device, the patient recovered completely [58]. Ali et al.
described three similar cases. Cardiac rhythm strips were available and showed a
regular ‘p’-wave (atrial rhythm) with no ventricular activity, indicating a complete
AV nodal block. In two of these patients the device was subsequently removed.
In one patient the device was left in place without experiencing any other adverse
events after the start of VNS [59]. Andriola et al. reported on three patients who
experienced an asystole during intraoperative lead testing and who were subse-
quently chronically stimulated [60]. Ardesch et al. reported on three patients with



22.2 Vagus Nerve Stimulation 289

intraoperative bradycardia and subsequent uneventful stimulation [61]. Possible
hypotheses with regard to the underlying cause are inadvertent placement of the
electrode on one of the cervical branches of the vagus nerve or indirect stimulation
of these branches, reversal of the polarities of the electrode which would lead to
primary stimulation of efferents instead of afferents, indirect stimulation of cardiac
branches, activation of afferent pathways affecting higher autonomic systems or
of the parasympathetic pathway with an exaggerated effect on the atrioventricular
node, technical malfunctioning of the device, or idiosyncratic reactions. The con-
tributing role of specific AEDs should be further investigated. Suggested steps
to be taken in the operating room in the case of bradycardia or asystole dur-
ing generator and lead-impedance testing have been formulated by Asconape et
al. [58]. Adverse cardiac complications at the start or during ramping-up of the
stimulation intensity have not been observed [29]. Very recently, one case report
described a late-onset bradyarrhythmia after two years of vagus nerve stimulation
[62].

22.2.2.2 MRI
Most patients with refractory epilepsy who are treated with VNS have previ-
ously undergone MRI during the presurgical evaluation. It is not uncommon
for such patients to require MRI after VNS implantation in order to further
monitor underlying neurological diseases, e.g., in case of unexplained seizure
frequency increase, follow-up of intracranial lesions, or for MRI indications
as in the general population. Based on laboratory testing using a phantom to
simulate a human body, the VNS TherapyTM system device is labelled MRI
compatible when used with a send and receive head coil [63]. In addition to
the safety issues, there was no significant image distortion [64]. A retrospec-
tive analysis of 27 MRI scans, performed in 25 patients in 12 different centers,
confirmed the findings from the experimental set-up in a clinical series. All pa-
tients were scanned on a 1.5 Tesla machine. On one occasion a body coil was
used. Three scans were performed with the stimulator in the on-mode. One
patient reported a mild voice change for several minutes; one child reported
chest pain and claustrophobia. Twenty-three patients reported no discomfort
around the lead or the generator. It was concluded that MRI is safe as long
as guidelines stated in the physician’s manual of the implanted device are
followed.

In these guidelines it is suggested to program the pulse generator output current
and the magnet output current to 0 mA. On one occasion this has led to the
occurrence of a generalized status epilepticus in a patient who was well controlled
with an output current of 2 mA [65]. The authors of the report recommend that
intravenous access should be obtained and a benzodiazepine should be either
available or preadministered in patients with a well-defined response who undergo
elective MRI and in whom the generator is acutely programmed to 0 mA.

Functional MRI (fMRI) is a recently developed technique that allows non-invasive
evaluation of cerebral functions such as finger movements and language [66]. It
has been widely used for research but is currently increasingly applied to evaluate
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functional tissue in the neighborhood of lesions before resective surgery and
also for assessing language dominance in the presurgical evaluation of epilepsy
patients [66, 67]. When fMRI in patients with VNS is used for research purposes
to evaluate VNS-induced changes in cerebral blood flow, scanning should be
performed in the on-mode. To prevent the device from being turned off during
scanning, an adjustment in the surgical positioning of the device is necessary. The
device should be positioned so that the electrode pins that are plugged into the
generator are parallel instead of perpendicular to the long axis of the body [68].
There have been several studies in patients treated with VNS for epilepsy as well as
for depression showing that fMRI is safe and feasible [69–73]. These studies were
performed to elucidate the mechanism of action of VNS and will be discussed later
in this study.

The use of body coils may be indicated in patients requiring spinal MRI. Placing
a cold pack (water and ammonium nitrate) over the left side of the patient’s neck
protected the vagus nerve, in three children, from heat that can theoretically be
generated when using the body coil [74].

When removal of the electrode is indicated, e.g., due to insufficient efficacy,
complete removal is recommended over cutting the distal edges and leaving the
electrode in place [75]. Full removal allows potential future MRI with body coils.
Heating of the electrode is related to the lead length. If full removal of the electrode
is difficult the leads should be cut to less than 10 cm.

In several of our patients uneventful MRI was performed according to the pre-
scribed precautions. In one patient with frequent simple partial seizures successful
and uneventful fMRI was performed with the stimulator in the off-mode.

22.2.3
Mechanism of Action

Since the first human implant of the VNS TherapyTM device in 1989, over
50 000 patients have been treated with VNS worldwide. As for many antiepileptic
treatments, clinical application of VNS preceded the elucidation of its mechanism
of action (MOA). Following a limited number of animal experiments in dogs and
monkeys, investigating safety and efficacy, the first human trial was performed [22].
The basic hypothesis on the MOA was based on the knowledge that the tenth cranial
nerve afferents have numerous projections within the central nervous system and
that, in this way, action potentials generated in vagal afferents have the potential to
affect the entire organism [76]. To date, the precise mechanism of action of VNS
and how it suppresses seizures remains to be elucidated.

Research directed towards investigating the antiseizure, antiepileptic and po-
tential antiepileptogenic properties of VNS, as well as towards the identification
of involved fibers, intracranial structures and neurotransmitter systems, has been
performed. Animal experiments and research in humans treated with VNS have
comprised electrophysiological studies (EEG, EMG, EP), functional anatomic brain
imaging studies (PET, SPECT, fMRI, c-fos, densitometry), neuropsychological
and behavioral studies. Also, from the extensive clinical experience with VNS,
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interesting clues concerning the MOA of VNS have arisen. More recently the role
of the vagus nerve in the immune system has been investigated.

From the extensive body of research on the MOA, it has become conceivable
that effective stimulation in humans is primarily mediated by afferent vagal A-
and B-fibers [77, 78]. Unilateral stimulation influences both cerebral hemispheres,
as shown in several functional imaging studies [79, 80]. Crucial brainstem and
intracranial structures have been identified and include the locus coeruleus,
the nucleus of the solitary tract, the thalamus and limbic structures [81–84].
Neurotransmitters playing a role may involve the major inhibitory neurotransmitter
GABA, but also serotoninergic and adrenergic systems [85,86]. More recently, Neese
et al. found that VNS, following experimental brain injury in rats, protects cortical
GABAergic cells from death [87]. A SPECT study in humans before and after one
year of VNS, showed a normalisation of GABAA receptor density in the individuals
with a clear therapeutic response to VNS [88]. Follesa et al. showed an increase
of norepinephrine concentration in the prefrontal cortex of the rat brain after
acute VNS [1]. An increased norepinephrine concentration after VNS has also
been measured in the hippocampus [89] and the amygdala [90]. Currently, VNS is
being explored as a neuroimmunomodulatory treatment. As the vagus nerve plays
a critical role in the signalization and modulation of inflammatory processes, the
so-called anti-inflammatory pathway, this could represent a new modality in the
MOA of VNS for epilepsy [91, 92].

Early animal experiments in acute seizure models suggest an anti-seizure effect of
VNS. In our own group, VNS significantly increased the seizure threshold for focal
motor seizures in the cortical stimulation model [93]. Also, in the human literature,
evidence exists that VNS may exert an acute abortive effect. The magnet feature
allows a patient to terminate an upcoming seizure [94]. Also, a few case reports
describe the use of VNS for refractory SE in pediatric and adult patients [41, 42]. A
recent study investigated the effects of acute VNS on cortical excitability by using
transcranial magnetic stimulation (TMS) [95].

The fact that seizures reoccur after the end of battery life has been reached
is a strong argument against VNS having an antiepileptogenic effect. However,
as progress in the development of more relevant animal models for epilepsy has
been made, the antiepileptogenic potential of neurostimulation in general is being
fully explored and some promising results have been reported, eg., in the kindling
model [96, 97]. The basis for the combined acute and more chronic effects of VNS
most likely involves recruitment of different neuronal pathways and networks.
The more chronic effects are thought to be a reflection of modulatory changes
in subcortical site-specific synapses with the potential to influence larger cortical
areas. In the complex human brain these neuromodulatory processes require time
to build up. Once installed, certain antiepileptic neural networks may be more easily
recruited, e.g., by changing stimulation parameters that may then be titrated to
the individual need of the patient. This raises hope for potential anti-epileptogenic
properties of VNS using long-term optimized stimulation parameters that may
affect and potentially reverse pathological processes that have been installed over a
long period of time.
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22.3
Hippocampal Stimulation

22.3.1
Clinical Efficacy and Safety

Electrical seizure onset in the amygdala and hippocampus is the key feature of
the medial temporal lobe epilepsy syndrome [98]. Acute DBS in medial temporal
lobe structures for control of seizures has been described [99]. In a small number
of patients with complex partial seizures requiring invasive video-EEG monitoring
for localizing purposes, unilateral DBS decreased interictal and ictal epileptic
activity during a two-week period using temporary depth electrodes. The recording
electrodes that were used for invasive video-EEG monitoring are unsuitable for
long-term DBS and had to be removed. Subsequently, all patients underwent
a temporal lobectomy. Animal studies have shown abortive effects on epileptic
activity when electrical fields were applied to hippocampal slices [100]. In vivo
studies in rats showed that electrical stimuli applied following a kindling stimulus
(‘quenching’) can delay the development of the kindling process [101]. Bragin
et al. and Velisek et al. found that repeated stimulation of the hippocampal
perforant path in the kainate rat model significantly reduced seizures [102, 103].
Performing chronic DBS implies removal of recording electrodes and replacement
by chronic DBS electrodes. Because the purpose is to stimulate the ictal onset
zone, replacement of electrodes should be anatomically as accurate as possible.
Even with currently available neuronavigation technology, positioning of a second
electrode in exactly the same position as the initial one is difficult. We have
therefore studied the feasibility of recording intracranial EEG activity for localizing
purposes and subsequent long-term DBS of the identified ictal onset zone using
the same electrodes with the aim to evaluate the long-term efficacy and safety of
chronic DBS in medial temporal lobe structures, and to investigate the feasibility
of using chronic DBS electrodes for the localization of the ictal onset zone prior to
DBS to avoid an additional invasive procedure. An initial pilot study was performed
to demonstrated proof-of-concept [104]. The number of patients in the pilot study
was increased and long-term follow-up was reported [105]. The study prospectively
evaluated the efficacy of long-term deep-brain stimulation in medial temporal
lobe structures in patients with MTL epilepsy. Twelve consecutive patients with
refractory MTL epilepsy were included. The protocol included invasive video-EEG
monitoring for ictal onset localization and evaluation for subsequent stimulation
of the ictal onset zone. Side-effects and changes in seizure frequency were carefully
monitored: 10/12 patients underwent chronic MTL DBS; 2/12 patients underwent
temporal lobectomy. After a mean follow-up of 31 months (range: 12–52 months)
1/10 stimulated patients is seizure free (>1 year), 1/10 patients has a >90%
reduction in seizure frequency; 5/10 patients have a seizure frequency reduction of
>50%; 2/10 patients have a seizure frequency reduction of 30–40%; 1/10 patients
is a non-responder. None of the patients reported side-effects. In one patient MRI
showed asymptomatic intracranial hemorrhages along the trajectory of the DBS
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electrodes. None of the patients showed significant changes in clinical neurological
and neuropsychological testing. Patients who underwent temporal lobectomy are
seizure free (>1 year), AEDs are unchanged and no side-effects have occurred.

This open pilot study demonstrates the potential efficacy of long-term DBS in
MTL structures that should now be further confirmed by multicenter randomized
controlled trials. CoRaStiR is an ongoing multicenter study in Belgium and
Germany including patients with unilateral hippocampal sclerosis who will be
randomized to unilateral hippocampal DBS or amygdalohippocampal resection.

22.3.2
Mechanism of Action

The mechanism of action (MOA) of DBS in reducing seizures remains unclear.
Some support the hypothesis that actual stimulation is not necessary to achieve
efficacy and claim that efficacy is based on the lesion provoked by the insertion
of the electrode (‘microthalamotomy’ effect) [15]. Furthermore, prolonged seizure
control in patients who underwent invasive recording with conventional electrodes
has been described [106]. Blinded randomization of patient to ‘on’ and ‘off’
stimulation paradigms following implantation during follow-up >6 months, may
clarify this issue and may also simultaneously clarify the potential effect of sham
stimulation due to an implanted device. DBS may also act through local inhibition
induced by current applied to nuclei that are involved in propagating, sustaining
or triggering of epileptic activity in a specific CNS structure (‘reversible functional
lesion’). Apart from this ‘local’ inhibition, the MOA of DBS may be based on
the effect on projections leaving from the area of stimulation to other central
nervous structures. This may be the most likely hypothesis when crucial structures
in epileptogenic networks are involved. However, considering that the medial
temporal lobe structures are also potentially involved in these networks it may be
that targeting the ictal focus may also affect the epileptogenic network.

22.4
Conclusion

Patients with refractory epilepsy present a particular challenge to new therapies.
VNS has proved to be an efficacious and safe treatment. The efficacy of VNS in
less severely affected populations remains to be evaluated. The current consensus
on efficacy is that 1/3 of patients have a considerable improvement in seizure
control with a reduction in seizure frequency of at least 50 %, 1/3 of patients
experience a worthwhile reduction of seizure frequency between 30 and 50 %. In
the remaining 1/3 of the patients there is little or no effect. VNS seems equally
efficient for children. The degree of improvement in seizure control from VNS
remains comparable to new antiepileptic drugs. Patients appear willing to undergo
surgery for improvements in this range in order to avoid the usual undesirable
effects of antiepileptic medication. Contrary to treatment with AEDs, efficacy
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has a tendency to improve with longer duration of treatment up to 18 months
postoperatively. Analysis of larger patient groups and insight into the mode of
action may help to identify patients with epileptic seizures or syndromes that
respond better to VNS, and guide the search for optimal stimulation parameters.
Further improvement of clinical efficacy may result from this.

Deep-brain stimulation for epilepsy is beyond the stage of proof-of-concept but
still needs thorough evaluation in confirmatory pilot studies before it can be
offered to a larger patient population. The most adequate targets and stimulation
parameters need to be identified. For patients who are less suitable candidates
for epilepsy surgery, DBS may become a valuable alternative. Randomized and
controlled studies in larger patient series are ongoing and will need to identify the
potential treatment population and optimal stimulation paradigms.
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23
Responsive Neurostimulation for the Treatment of Epileptic
Seizures

Gregory K. Bergey

23.1
Introduction

Despite the introduction of multiple new antiepileptic drugs (AEDs) over recent
years, many patients remain refractory to medications. Patients with partial seizures
(with or without secondary generalization) make up over half of patients with
seizure disorders [1] and only about half of these patients will have their seizures
controlled with available AEDs. If patients with partial seizures fail to be controlled
with good trials of three different AEDs, the chance of seizure control with
additional medication trials may be less than 5 % [2]. Seizure surgery remains a
highly effective and underutilized treatment modality for a subset of these refractory
patients, but not all patients are good surgical candidates. Patients with multifocal
partial seizures or seizures originating from eloquent brain areas are examples of
patients who are not optimal surgical candidates. Some patients with non-lesional
neocortical epilepsy may also not have the same chance for seizure freedom with
surgery as do patients with mesial temporal sclerosis or lesional epilepsy. Although
new AEDs continue to be developed, alternative means of treatment of epilepsy are
needed. Neurostimulation offers the potential benefits of mechanisms of action
distinct from AEDs and stimulation also avoids the potential toxic, cognitive, and
idiosyncratic side-effects of medications.

23.2
Characteristics of Partial Seizures

Partial seizures originate from focal epileptogenic regions. Partial seizures can be
either simple partial (with no alteration of consciousness) or complex partial (with
alteration of consciousness). Simple partial seizures (e.g., an aura) can evolve to
complex partial seizures, and complex partial seizures can secondarily generalize.
Partial seizures originating from a single focus are typically clinically similar in
a given patient. Partial seizures are transient events, typically lasting less than
120 seconds plus any postictal period [3]. Seizures spontaneously terminate, often
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synchronously in all brain regions. While AEDs may reduce seizure number and
secondary generalization, there is no evidence that AEDs shorten partial seizure
duration or alter intrinsic seizure dynamics [4].

Application of sophisticated time-frequency analyses of intracranial recordings
of seizures reveals that the intrinsic dynamics of partial seizures are remarkably
similar for all seizures from a given focus in a given patient, particularly at seizure
onset [5, 6]. This similarity in seizure onset dynamics greatly facilitates early and
accurate seizure detection.

23.3
Types of Neurostimulation

Neurostimulation can be either chronic, programmed stimulation or responsive
stimulation. Chronic stimulation involves regular periodic stimulation that is
independent of seizure occurrence. Programmed stimulation can be applied to
brain regions (e.g., thalamus, hippocampus) or to extracranial sites (e.g., vagus
nerve). Vagus nerve stimulation (VNS) is the one approved therapy for the treatment
of partial seizures [7]. About 40–50 % of patients with partial seizures will have
a 50 % reduction in their seizures with VNS therapy, but few (<5 %) become
seizure free. Vagus nerve stimulation has the option for patients to activate sti-
mulation with a magnet. While there are anectodal reports of VNS activation at
seizure onset benefiting certain patients, controlled trials of the effects of patient
activation of the VNS have not been published. Because the VNS does not benefit all
patients and because few patients have their seizures controlled, other programmed
stimulation paradigms are being investigated, involving intracranial stimulation,
in the hope that this will provide improved efficacy over VNS. Other chapters
in this volume will discuss VNS, chronic anterior thalamic stimulation, and
programmed hippocampal stimulation and these will therefore not be discussed
further here.

Responsive neurostimulation (RNS) is designed to stimulate the brain shortly
after seizure onset. In contrast to programmed stimulation (e.g., VNS, thala-
mic stimulation) that are open-loop stimulation systems, responsive stimulation
employs a closed-loop system. Although the potential exists in the future to ap-
ply RNS using seizure-prediction algorithms, the present RNS applications use
seizure-detection algorithms. These can utilize various methods or combinations
of detection methods such as line length, area under the curve, or half wave.
Seizure detection then triggers the closed-loop responsive stimulation directed at
or near the seizure focus. For RNS to provide meaningful benefit to the patient,
seizures must be detected with high sensitivity, and the applied therapy should
terminate the seizure before it evolves to a disabling seizure. While AEDs and
VNS are designed to reduce seizure frequency, RNS is applied to alter seizure
dynamics after the seizure has begun. As mentioned above, complex partial
seizures are of relatively short duration. If RNS only reduces a 75 second com-
plex partial seizure to 60 seconds, then this may provide no meaningful benefit
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to the patient if alteration of consciousness still occurs. If, however, RNS termi-
nates the seizure after 2–5 seconds, when the patient has either had no clinical
manifestations or perhaps only a brief aura, then such therapy would be very
beneficial.

The consideration of application of electrical stimulation directly to brain regions
raises several potential concerns. The first is that such excitatory stimuli may be
ineffective or in fact even cause seizures. There is concern that such stimulation
might be painful, but the brain parenchyma is pain insensitive and such stimulation
is not only painless, but typically the patient is not aware of the therapy (in contrast
to VNS where there is some awareness of the stimulation). Another question is
whether repetitive stimulation might kindle the human brain, but this has not been
observed.

The concept of application of electrical stimulation to the brain to control
seizures might at first appear counterintuitive since epileptic seizures are periods
of temporary increased synchronous neuronal network activity. In the hippocampus
80–90 % of neurons are excitatory; any applied stimulus would stimulate these
neurons as well as any inhibitory interneurons. In neuronal network models,
seizure termination can be produced by excitatory stimuli [8, 9]. In these same
network models, seizure termination does not require inhibition (i.e., inhibitory
neurons can be effectively removed, with synaptic weights reduced to zero). These
studies suggest that stimulation with excitatory stimuli can be reasonably expected
to alter seizure dynamics.

The application of RNS is distinct from cardiac defibrillation. Treatment of
ventricular cardiac arrhythmias is done with a high-intensity stimulus designed to
repolarize the entire heart, after which the normal pacemaker activity returns. The
hypothesis underlying RNS therapy is to apply small currents (e.g., ≤12 mA) to
focal regions of the brain and disrupt the abnormal synchronous activity, producing
earlier termination than would otherwise occur. Cardiac arrhythmias left untreated
typically do not terminate spontaneously whereas epileptic seizures are intrinsically
transient events.

Requirements for responsive stimulation are several. It appears to be ben-
eficial to know the region of seizure onset, since the purpose of RNS is to
disrupt partial seizures early, before regional propagation. However, since epilep-
tic seizures are network phenomena, it is possible that stimulation at more
remote sites will provide benefit, but this is not known. The seizures must be
able to be detected with high sensitivity. The fact that complex partial seizures
from a specific focus in a given patient have very similar dynamics, makes
it relatively straightforward to tune a detection algorithm to be very sensi-
tive, particularly when using intracranial electrodes which avoid the artifacts
present with scalp recordings. The device must be well tolerated and long-term
stimulation must be safe. Ultimately the desire is to be able to modify (e.g.,
terminate) further seizure activity and evolution, specifically to prevent subclinical
(i.e., electrical) or simple partial seizures from evolving to seizures that produce
alteration or loss of consciousness (i.e., complex partial or secondarily generalized
seizures).
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23.4
Current Status of Investigations of Responsive Neurostimulation

Prior to beginning investigations with the implantable RNS, several preliminary
studies were performed. The first proof of principle study was to determine whether
stimulation at modest currents (≤12 mA) could terminate seizure activity. These
trials were performed in patients with subdural grids undergoing functional map-
ping as part of their presurgical evaluations. During this mapping occasionally the
stimulation will produce afterdischarges. Trials were done to confirm that subse-
quent stimulation could terminate the afterdischarges [10]. Independently another
group also determined that stimulation could terminate these afterdischarges [11].

The next phase of RNS evaluation was the external RNS (eRNS). In these inves-
tigations, patients undergoing intracranial recordings for presurgical evaluations
were connected to the eRNS, a device that duplicated the implantable technology.
Connection was done so as not to compromise the presurgical evaluations. These
studies confirmed that detection algorithms could be accurately tuned to accurately
detect seizures from intracranial electrodes. In some patients, if there was a brief
period (typically 12–48 hrs) following completion of the presurgical evaluation but
before actual scheduled surgery (removal of intracranial electrodes with, at times,
resective surgery), the device was switched to a closed-loop responsive system.
These studies, while not designed to determine efficacy, suggested that responsive
stimulation could terminate seizures in some patients [12] (cf. Figure 23.1) and
that the stimulations were well tolerated. Only a rare patient had any perception
of the stimulation. These closed-loop eRNS studies were only done if there was a
window prior to surgery; surgery was not delayed in any patient to do closed-loop
studies. The favorable results from these preliminary studies led to trials of the
implantable RNS.

The Neuropace RNS system is the only device for responsive neurostimulation
currently undergoing controlled trials in humans. The implantable RNS contains
a battery powered microprocessor controlled device that can deliver brief electrical
stimuli through implanted intracranial leads. The present design allows for two
intracranial electrodes to be connected to the device (more can be implanted), either
depth arrays or subdural strips. Placement of these arrays is based on previous
ictal recordings during intensive monitoring; not all patients require previous
intracranial monitoring (Figure 23.2). The device is extradural and is placed in a
tray recessed in and anchored to the skull and covered by muscle and skin. The RNS
device can be programmed painlessly through the skin with a wand connected to
a portable computer. Similarly, real time EEG and checks of electrode impedance
can be made with the wand. Stored data, including EEG, can be downloaded by
the patient or investigator and sent via internet to the Neuropace server where
they can be reviewed by investigators. Although a record of all detections and
delivered therapies is recorded, actual recorded EEG epochs are limited by the
storage capabilities of the small device. Options exist to prevent overwriting; more
frequent patient downloading can increase the number of detailed epochs available
for analysis.
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Fig. 23.1 Example of seizure termination produced by
closed-loop external responsive neurostimulation (eRNS)
in a patient with intractable epilepsy undergoing intracranial
monitoring with subdural grid arrays for presurgical evalua-
tion ([12], Neurospace, used with permission).

Stimulation parameters for the RNS device allow up to 12 mA total current to
be delivered; this may be divided among multiple contacts. Different contacts or
the device itself can serve as anode or cathode. Typical pulse durations are in
the range of 160 µs with stimulus durations of 100–200 ms. Stimulus frequencies
are variable, but 100–200 Hz are most commonly employed. Up to five therapies
(responsive stimulation) can be delivered for each detected event.

The eRNS trial, which was not designed to demonstrate efficacy, showed that the
detection algorithms could be tuned to provide accurate detection of seizure onset
within two seconds. Some therapy was delivered during the closed-loop phase and
some seizures appeared to be terminated with therapy.

Following the eRNS study, a safety and feasibility trial was conducted with the
implantable RNS device. There were efficacy evaluation periods, but the study
was not blinded unless a given center had more than four patients entered, in
which case additional patients were randomized to stimulation on or off for a
28 day period after which all patients received therapy. The open extension of
these patients continues. This study of 65 patients at 12 centers was completed
in 2005. There were no serious surgical complications. The RNS implantation is
well tolerated; patients typically spend at most one overnight stay in the hospital
following implantation, and are fully active the first post-operative day. There
were no unanticipated serious device related adverse events. While this study was
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Fig. 23.2 A patient with left dominant
temporal cortical dysplasia and unilateral
periventricular heterotopias as shown on
the MRI (T1 weighted image) on the left
prior to RNS implantation. The skull films
on the right show the RNS device and the

implanted subdural strips and a depth elec-
trode array targeting the periventricular nod-
ules. The seizures in this patient originated
from the periventricular nodular heterotopias.
She has had a >90 % seizure reduction with
the RNS; implantation was three years ago.

designed for assessment of safety and tolerability of RNS implantation and not
efficacy, some assessments of the effects on seizure frequency were done. Complex
partial, generalized tonic-clonic, and total disabling seizures were significantly
reduced by 40 %, 55 %, and 41 %, respectively, (not all patients had GTCS). Some
patients who did not benefit from RNS were subsequently determined upon review
to have multifocal seizures or to have electrode placements that were not close to
the seizure focus [13, 14]. Other unblended preliminary reports of small numbers
of patients have been published [15, 16].

Following the safety and feasibility RNS trial, a pivotal blinded trial, has begun
and is ongoing. Following a baseline period (patients need to have at least three
complex partial seizures per month) the RNS is implanted, patients are randomized
to therapy on or off for four months and then all patients can enter the open label
period when therapy is enabled. Thirty centers are participating and it is expected
that recruitment will be completed in late 2008. It is hoped that, with appropriate
patient selection and improved therapy paradigms, better efficacy will be seen than
in the safety and feasibility trial.

Although certain parameters (see above) are employed for setting the RNS, there
are no standard stimulation parameters that are employed in all patients and the
stimulation parameters can be adjusted during the blinded period by the treatment
physician (who is not blinded). Equal time is spent with patients with therapy
enabled and those not being stimulated so that patients cannot determine whether
therapy is enabled or off during the blinded phase. Since there are no cognitive
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or systemic side-effects from RNS, in contrast to AED trials, and since patients
are not aware of RNS (in contrast to VNS stimulation), the blind can in fact be
preserved, perhaps even more easily than in AED or VNS trials where side-effects
or stimulation may be appreciated by the patients.

23.5
Conclusion

Neurostimulation for the treatment of epilepsy remains a promising therapeutic
modality with the benefits of mechanisms distinct from AEDs and the advantage of
a lack of drug-related side-effects. Chronic stimulation paradigms have produced
seizure reduction in patients, but rarely have resulted in seizure control, the goal of
treatment. The concept of responsive neurostimulation is an attractive one, in that
the stimulus is delivered in ‘response’ to seizure activity at or near the seizure focus,
with the goal to disrupt or terminate electrical or simple partial seizures before they
propagate to become disabling seizures with alteration or loss of consciousness.

The technology for the RNS is actually well developed. The device can be tuned
to detect seizure activity in each patient with high sensitivity and detection can be
accurately done within seconds of electrical seizure onset. The implanted device
is well tolerated and there have been no safety concerns. There is no evidence
that multiple stimulations kindle the human brain, one of the early theoretical
concerns. Programming can be easily done transcutaneously and seizures can be
downloaded for analysis. Improved storage of events and batteries with longer life
(or rechargeable) will enhance the RNS capabilities.

Interestingly, tuning the RNS for early detection results in responses not to
just clinical seizures or long electrical events, but to interictal electrical activity
and indeed any activity that fulfills the detection criteria. Patients may have many
detections and delivered therapies per day, many more than would be expected
based on clinical seizure numbers. Total therapy per day is still only seconds
because of the brief duration of the stimuli. These are not false positive detections,
since they are detections based on the programmed criteria and the desire for
early detection. Clearly, however, many of the detections and many of the delivered
therapies are directed to activity that would not evolve to become disabling seizures.
Whether therapy directed to this interictal activity is beneficial is not determined; it
may be. If, however, the results of the pivotal trial demonstrate efficacy, as is hoped,
it may be difficult to determine whether these effects are solely due to effects
on seizure onset or whether benefits might result from the many stimulations
triggered by other activity that would not have evolved into clinical seizures even
without therapy.

There are other unanswered questions. As with all types of neurostimulation, the
optimal stimulation parameters are not yet clearly established with RNS. It appears
that proximity of the stimulating electrodes near the seizure focus is desirable.
It is possible that regional network seizure activity could be disrupted by more
remote stimulation, although if early termination is the goal then one wants to
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stimulate before there is extensive seizure propagation. Whether certain patient
subgroups (e.g., mesial temporal, neocortical, etc.) will benefit from RNS remains
to be determined. The conclusion of the pivotal RNS trial will provide insights into
the efficacy of the RNS, but many of these questions may remain unanswered until
there is more extensive experience.
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24
Chronic Anterior Thalamic Deep-brain Stimulation
as a Treatment for Intractable Epilepsy

Richard Wennberg

24.1
Introduction

Neurostimulation as an alternate form of treatment for intractable epilepsy was first
considered based on observations dating from the 1940s that electrical stimulation
of various subcortical structures could modify the cortical EEG, with high-frequency
stimulation ‘desynchronizing’ the EEG and low-frequency stimulation ‘synchro-
nizing’ the EEG [1–4]. Increased cortical synchrony mediated by low-frequency
stimulation was demonstrated to be ‘proepileptic’ while cortical desynchroniza-
tion mediated by high-frequency stimulation was shown to be ‘antiepileptic’ [5, 6].
Experimental or clinical antiepileptic properties have since been reported with
chronic electrical stimulation of a number of different central and peripheral
nervous system sites, including the cerebellum, hypothalamus (mamillary nuclei),
vagus nerve, trigeminal nerve, caudate nucleus, substantia nigra, centromedian
thalamus, anterior thalamus, subthalamic nucleus, and direct epileptic focus
stimulation in the amygdalohippocampal region [7–39]. Peripheral vagus nerve
stimulation is the only form of neurostimulation currently licensed for treatment
of patients with refractory epilepsy: controlled trials and subsequent widespread
clinical usage have demonstrated significant, albeit modest, reduction in seizure
frequencies [40, 41].

In the hope that direct stimulation of central nervous system structures might
provide additional, more robust, benefit in terms of seizure control, there has
been a renewed interest in performing clinical trials of deep-brain stimula-
tion (DBS) for epilepsy, especially given the modern successes of DBS in the
treatment of various movement disorders. The first clinical trials of DBS in
epilepsy were performed in the 1970s and 1980s, mainly using cerebellar and,
to a lesser extent, anterior thalamic stimulation or caudate stimulation. Most
of these studies were uncontrolled and, although a majority of patients were
described to benefit from DBS treatment, the details were not always clear
in the reports and the few controlled studies performed showed little bene-
fit [7–11, 16].

Seizure Prediction in Epilepsy. Edited by Björn Schelter, Jens Timmer and Andreas Schulze-Bonhage
Copyright  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40756-9
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DBS of the centromedian thalamic nucleus (CM) for intractable epilepsy has
been reported in most detail in the literature, with beneficial results described in
terms of seizure control for a majority of patients studied [17–20]. However, one
controlled study of CM stimulation for epilepsy did not find the observed reduction
in seizures to achieve statistical significance [24].

The mechanisms by which DBS may control seizures are largely hypothetical
and unproven. CM stimulation, acting via the widely projecting ‘non-specific’
thalamic system, is hypothesized to act through induction of cortical desynchro-
nization, preventing seizure propagation and generalization [17, 24]. Based on
experimental data describing a ‘nigral control of epilepsy’ system in rodents, con-
trolled in large part by activity in the substantia nigra pars reticulata (SNpr) [42],
subthalamic nucleus stimulation has been proposed to act through disfacili-
tation of SNpr neurons [28], although there is no direct evidence for such
a control system in primates. The anterior thalamus has been demonstrated
to be involved in seizure propagation, both experimentally and clinically, and
stimulation or lesioning of the anterior nucleus (AN) or its afferent pathways
has been shown experimentally to have antiepileptic properties [8, 12–16]. The
dorsomedial nucleus of the thalamus (DM), situated posterior and inferior to
AN, has also been shown to be involved in the maintenance and propagation
of seizures, specifically those involving limbic brain structures [43, 44]. Ante-
rior thalamus stimulation, aimed especially at AN, is thus hypothesized to act
through blockade of corticothalamic synchrony, similar to CM. All of these pro-
posed mechanisms are strictly hypothetical and, in fact, even the local effects
of DBS are poorly understood. In a broad sense, most of the clinical effects of
DBS can be considered to result from local ‘inhibition’ of function, in that the
effects are typically mimicked by lesions or application of inhibitory neurochem-
icals. Nevertheless, the mechanisms of local inhibition are unresolved and it is
possible that some effects of DBS could result from local neuronal or axonal
excitation.

The exact parameters necessary to optimally alter the relevant corticothalamic
networks with electrical stimulation are unknown, apart from the need for high-
frequency stimulation (for example, greater than or equal to 100 Hz). In the
experimental models cited above, it is only high-frequency stimulation that shows
antiepileptic properties, usually attributed to a cortical desynchronizing effect. In
contrast, low-frequency stimulation tends to be proepileptic in experimental mod-
els, an observation conceptually linked to the increased synchronization in cortex
that can be demonstrated through induction of the so-called recruiting rhythm
with low-frequency thalamic stimulation.

24.2
Anterior Thalamus DBS for Epilepsy

As described above, one of the regions suggested for therapeutic DBS in epilepsy
is the anterior thalamus. The more specific target typically discussed is AN,
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which is an area relatively accessible to neurosurgical DBS electrode implanta-
tion and a nuclear complex with widespread corticothalamic connectivity, situated
in an optimal position to interrupt and influence the development and prop-
agation of epileptic discharges arising elsewhere in the brain. The AN is the
crucial thalamic outflow point in the circuit of Papez, connecting the hippocam-
pal formation, via the diencephalon, with the mesial frontal lobe structures and
cingulum, areas which in turn send inputs back to the mesial temporal limbic
structures. Lesions in AN or its proximate input pathways have been shown to
have antiepileptic effects in experimental models. Likewise, local application of
inhibitory chemical neurotransmitters and the application of high-frequency elec-
trical stimulation has mimicked the antiepileptic effects of lesioning in the same
models [12–15].

AN DBS could beneficially affect epilepsy in either of two ways. The local ‘lesion-
mimicking’ effects could act to block propagation of cortically-generated seizures,
helping to prevent diffuse spread of seizure activity and, in so doing, minimize
the severity of seizures. In addition, it is possible that the neuromodulatory effects
of chronic AN DBS might beneficially alter the level of cortical ‘excitability’ in a
fashion resulting in a decreased propensity for seizure occurrence, thus decreasing
seizure frequency.

Results of pilot trials of chronic AN DBS for epilepsy have shown a decrease
in seizure frequency in a majority of patients [8, 16, 30, 32, 33, 37, 38], although
this has not been clearly linked to the stimulation itself, as opposed to some
other effect of the procedure, such as microthalamotomy, surgical placebo,
etc., [30, 33]. Decreases in seizure severity have been reported in some pa-
tients but this variable has been harder to quantify with certainty to date. A
multi-center clinical trial of AN DBS for epilepsy (‘SANTE’ – Stimulation of
the Anterior Nucleus of the Thalamus for Epilepsy [45]) involving more than
one hundred patients in the United States is nearing completion at the time
of writing. The results from this trial, which includes an initial three-month
period of blinded, randomized assignment of patients to receive either true
stimulation or sham stimulation, will provide important information to supple-
ment and hopefully clarify much that has been described in the different pilot
studies.

The stereotactic techniques for implantation of the thalamic DBS electrodes
are described in the original papers, as are the details of the individual pilot
study protocols and stimulation parameters used. Readers interested in these
details are referred to the original reports. It should be emphasized that none of
these trials used any type of ‘responsive’ electrical stimulation – i.e., stimulation
was not delivered in response to seizure detection, but rather stimulation was
delivered chronically, usually intermittently in a fashion analagous to vagus nerve
stimulation, though trials of continuous stimulation were also carried out in some
patients.

A summary of the clinical results of the different pilot studies published in
recent years is presented in Table 24.1. As can be seen from the table, a majority
of patients overall showed a decrease in seizure frequency with AN DBS that was
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sustained during long-term follow-up. Although the study of Kerrigan et al. [32]
did not find a significant decrease in seizure frequency, these authors did report a
significant improvement with respect to seizure severity in their patients. Seizure
reduction with AN DBS was greater in the series of Osorio et al. [38] than in
the other studies, which the authors speculate may be due to the higher mean
stimulation frequency used in their study and/or the fact that all of their patients
suffered from documented mesial temporal lobe epilepsy (MTLE). Theoretically,
one might expect AN DBS to be most effective in MTLE, given the intimate
neuroanatomical connections between the hippocampal formation and anterior
thalamic nuclei in the aforementioned circuit of Papez.

The series of Kerrigan et al. [32] and Osorio et al. [38] did not include blinded
analyses of sham stimulation. However, both of these studies reported multiple
instances of worsened seizure control in patients whose stimulators were inciden-
tally discovered to have been inactivated. The series described in Hodaie et al. [30],
Andrade et al. [33] and Lim et al. [37] included formal analyses of seizure control
post-implantation of the DBS electrodes, prior to active stimulation, and the first
two also included periods of blinded sham stimulation carried out at various points
during follow-up. In contrast to the unblinded reports, these series could not
demonstrate a difference between stimulation ON and stimulation OFF.

It is to be hoped that the forthcoming results from the SANTE trial will illuminate:
(a) whether beneficial effects of AN DBS may be most pronounced in the subset
of patients with MTLE; and (b) whether active stimulation provides unequivocal
added benefit beyond that seen with simple insertion of the DBS electrodes.

24.3
EEG Recordings

Combined scalp-thalamic EEG recording of interictal spikes is a complicated issue.
In brief, typical scalp EEG spikes and sharp waves are recorded synchronously and
with opposite polarity from the thalamic DBS electrode contacts, with a small but
reproducible amplitude decrement present at each electrode contact more distant
from the cortical source. A detailed analysis of these intracranial waveforms indi-
cates that the DBS electrode-recorded potentials, seen in synchronous association
with EEG scalp spikes, represent volume conduction from epileptiform discharges
generated in the neocortex rather than locally generated activity resulting from
cortical-subcortical neural propagation. These findings have been discussed and
presented in detail elsewhere [46, 47].

Combined scalp-thalamic EEG recording of ictal activity (seizures) is also compli-
cated but not necessarily limited by the intracranial volume-conduction issues seen
with the high-amplitude interictal spike recordings. Seizures have been recorded
from the DBS electrodes during postoperative recordings carried out before elec-
trode internalization, and early ictal recruitment of the anterior thalamic structures
has been seen even in a patient with extratemporal, suprasylvian neocortical par-
tial epilepsy, despite the remoteness of seizure onset from the circuit of Papez
structures [48].
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Postoperative scalp EEG recording to document so-called recruiting rhythm
generation in response to low-frequency AN stimulation has been carried out as a
means of assessing functional thalamocortical connectivity between the implanted
anterior thalamic regions and the superficial cortex. This issue has been studied
in detail recently and interested readers are referred to the paper of Zumsteg
et al. [49]. For practical purposes, the usefulness of rhythmic EEG synchronization
induced by low-frequency thalamic DBS as a predictor of clinical efficacy appears
questionable at this time.

EEG source localization studies and combined DBS/depth electrode studies per-
formed in rare patients have proven useful in demonstrating the cortical activation
patterns seen in response to anterior thalamic DBS. Specifically, AN stimulation
affects primarily the ipsilateral cingulate gyrus, insular cortex and mesial and lat-
eral temporal structures, whereas DM stimulation (performed through the deepest
contacts of the thalamic DBS electrodes, which come to rest inferior and posterior
to AN, in DM) affects primarily the ipsilateral orbitofrontal, mesial and lateral
frontal areas, but also the mesial temporal structures [50–52].

24.4
Conclusions

It is too early to know whether chronic AN DBS will prove to be an effective therapy
for intractable epilepsy in humans. Although conceptually appealing and supported
by some experimental data, the procedure to date cannot really be considered to have
been proven effective enough to warrant its invasiveness. More restricted patient
selection, for example limiting the procedure to patients with temporolimbic (and
perhaps mesial frontal) epilepsies, may define a subset of patients most likely to
benefit, but this remains to be seen. Hopefully, the forthcoming results from the
multi-center SANTE trial will provide guidance in the near future.

The lack of demonstrable added benefit of stimulation in the studies that included
a blinded sham stimulation component is concerning. The results from the SANTE
trial will be informative on this count too. It is possible that the optimal stimulation
parameters have yet to be found, but it would be comforting at least to be able to
identify a difference between stimulation OFF and stimulation ON effects as a first
step. Furthermore, as with vagus nerve stimulation, a true surgical sham control
would be necessary to ascertain how much of any benefit may be related to placebo.

With reference to this conference’s overarching theme of seizure prediction, or
at least seizure detection, it is possible that thalamic DBS time-locked to seizure
onset might prove more clearly beneficial in the long run [53]. Work on this front
is ongoing and will hopefully prove fruitful. Notwithstanding, it is also conceivable
that the actual site of stimulation and the specific stimulation parameters used
may turn out to be relatively unimportant. Epilepsy, with its dynamic, episodic
nature, is a condition very different from the ‘hard-wired’, non-episodic movement
disorders and other conditions commonly treated with DBS. In the absence of
definitive evidence to date for a specific, linear, ‘neuroanatomical’ mechanism
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underlying the antiepileptic effects of DBS, it is plausible to consider that minimal
stimulation perturbations of the nervous system in any of a variety of sites could all
have similar, if limited, beneficial effects. Indeed, stopping a chronic stimulation
paradigm might be as effective as starting a stimulation paradigm, with both
changes potentially providing a perturbation sufficient to modulate the likelihood
of spontaneous transitions to epileptic seizures.
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25
Thoughts about Seizure Prediction from the Perspective
of a Clinical Neurophysiologist

Demetrios N. Velis

25.1
Introduction

Present-day good clinical practice in the diagnosis and treatment of epilepsy relies
on the correct classification of epilepsy syndromes. In turn, the present ILAE
classification emphasizes the correct use of seizure classification which is indis-
pensable without having access to seizure documentation, including description
of electroclinical correlations. Such correlations are commonly obtained by means
of long-term combined video/EEG seizure monitoring, of which several variants
exist, all of which make heavy use of at least scalp EEG and sometimes invasive
EEG recordings. In all cases clinical neurophysiology bears the brunt of seizure
documentation, often in a clinical setting of the so-called Epilepsy Monitoring Unit
(EMU).

It stands to reason that the EMU setting has traditionally been the testing ground
of various algorithms developed for the purpose of quantifying the EEG record
for detection purposes, be those for interictal epileptiform paroxysms or for the
identification of epileptic seizure episodes. Long-term video-EEG recording in the
course of presurgical evaluation is eminently suited for the purpose of validating
spike and seizure-detection algorithms. It follows that the clinical neurophysiologist
is keenly interested in an adequate anticipation of seizure events. Long-term video-
EEG seizure monitoring is a labor-intensive, and consequently costly, diagnostic
technique, which greatly stands to benefit from signal-analysis techniques that
may indicate imminent seizure onset. Analysis of the running EEG signal and
quantitative studies of interictal activity incidence and distribution, although highly
valid and largely validated for the purpose of helping localize the irritative zone,
have proven singularly unsuccessful in seizure anticipation. In fact, subjective
information supplied by the patient, such as the occurrence of prodromi, is often
quite reliable in this respect rather than the quantification of the interictal event
itself.

Detection of the ictal event, on the other hand, whether on the basis of the
classical visual interpretation of the running or recorded EEG signal, or on the var-
ious signal analytical techniques applied for that purpose, is largely successful; in
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the case of intracranial EEG recordings obtained from the zone of ictal onset,
approaching near-perfect specificity and sensitivity.

With the notable exception of reflex epilepsies, catamenial epilepsy and the
occasional anecdotal reference of a case report of chronobiologically consistent
seizure clustering, epileptic seizure occurrence has been, as far as the clinical
neurophysiologist is concerned, largely relegated to the realm of forecasting
uncertainty. Earlier attempts at reliably predicting or even anticipating seizure
occurrence have been met with skepticism. These results have often not been
replicated [1] owing to initial flaws in methodology as has already been pointed
out [2, 3] and fuelled by the discussion on whether the ictal event may ever be
predictable [4–6]. The reader is referred to Chapter 7 by Lopes da Silva et al. in
this volume, based on the keynote lecture of this workshop, and the published
literature [7, 8].

Thus the clinical neurophysiologist is becoming aware of the intractability of
the problem on seizure prediction, not only in cases of intractable epilepsy, and
may become just a bit skeptical on whether this problem may indeed prove
as ill-posed as the inverse problem of electro- and magneto-encephalography.
Inference on studies derived from active stimulation paradigms in reflex epilepsy
characterized by visual sensitivity [9, 10] suggests that changes occurring in the
brain en route to a provoked (e.g., in visual sensitivity) or spontaneously occurring
seizure (e.g., in mesial temporal lobe epilepsy) may in fact be gleaned on the
basis of changes in phase-clustering of the obtained response after an appropriate
perturbing stimulus has been administered. Nevertheless the phase-clustering
index remains a statistical tool yielding probability values that an ictal event is
more or less likely to occur rather than when it is to occur or not to occur, as the
case may be.

In what theoretically may be seen as a mutually beneficial contest between signal
analysis physicists or engineers and clinical neurophysiologists the latter have for
upwards of ten years now motivated patients and staff at the EMU alike poring over
days and weeks of continuous multi-channel scalp or intracranial EEG records in
an effort to obtain as artifact-free a record as possible for adequate signal analysis.
They have braved institutional review boards and medical ethics committee grilling,
contributed text to endless grant applications, dealt with countless mathematical
formulas and equations, dabbled in uni- and multivariate analysis techniques of
linear and nonlinear measures, tagged along to many a special interest group
meeting, and have yet to hear an encouraging word as to whether it has all been
worthwhile. In order to establish a modicum of opinion-forming for the purposes
of this symposium, the author undertook a short questionnaire-based survey
among his fellow full-time clinical neurophysiologists employed as such in The
Netherlands, a country in Western Europe boasting an unusually high percentage
of such professionals among its neurologists and hosting two large dedicated
institutes for the diagnosis and treatment of epilepsy, one of which was established
125 years ago. A total of 65 questionnaires were mailed to an address on file in early
2007; two were returned to sender as undeliverable. There were 37 responders,
including one incomplete response. A total of 36 responses were scored. The
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results of that survey were presented during the Freiburg Workshop and are cited
in the Appendix. As witnessed by this survey, the equivocal results so far gleaned
from the published literature have apparently led to a considerable degree of doubt
among the clinical neurophysiological community in The Netherlands. Indeed,
the discussions which took place during the Freiburg Workshop corroborated
the impression that the level of discourse had hitherto been hindered by poorly
conceived and relatively poorly executed, mostly underpowered studies primarily as
a result of lack of consensus as to how to approach the occurrence of the interictal
and the ictal event, not only in terms of statistical inference [11,12] but also in terms
of their significance with respect to the basic mechanisms of epileptogenicity and
epileptogenesis [13, 14].

One of our first priorities in the community of theoreticians, physicists, engi-
neers, epileptologists and clinical neurophysiologists should be to come up with
a commonly accepted definition as to what constitutes anticipation versus pre-
diction of an ictal event. In doing so we shall have to deal with the significance
of the epileptiform paroxysm. For that purpose we as EEGers can hardly expect
that the rest of the signal analysis community may accept the existing IFSECN
classification of what constitutes an epileptiform paroxysm which states that a
paroxysm is a phenomenon with abrupt onset, rapid attainment of a maximum
and sudden termination, distinguished from background activity. This term is
commonly used to refer to epileptiform patterns and to seizure patterns. In dis-
tinguishing between an interictal epileptiform pattern and a seizure pattern, the
IFSECN guidelines indicate that the former applies to distinctive waves or com-
plexes, distinguished from background activity and resembling those recorded
in a proportion of human subjects suffering from epileptic disorders. Epilepti-
form patterns include spikes and sharp waves, alone or accompanied by slow
waves, occurring singly or in bursts lasting at most a few seconds. The IFSECN
recognizes that seizure patterns in the EEG may not be accompanied by clin-
ical manifestations, in which case these are called subclinical seizure patterns.
To distinguish between interictal and ictal EEG patterns, the IFSECN recom-
mends that the term epileptiform be used in conjunction with the interictal
event [15].

A challenge ahead of us is to deal with the so-called electrographic seizure event,
with which most EEGers will denote a paroxysmally occurring event of several
seconds in duration during which no clinically manifest behavioral changes may
be noted in a patient who, when engaged in an interactive task, will not only
be oblivious to its occurrence but also not be hindered by it. The EEG of the
electrographic seizure event, for all intents and purposes indistinguishable from
the EEG at the onset of a clinically manifest seizure event, is easily detected by
most of the commercially available seizure detection algorithms. In both cases
the location and wave morphology may be identical. The question that the EEGer
would like to have answered is whether this event may be of significance in the
cascade leading to a clinically manifest epileptic seizure or whether it may be
relegated to the realm of the relatively non-contributory event of the interictal
paroxysm. Should it be significant in term of the system generating the signal we



320 25 Thoughts about Seizure Prediction from the Perspective of a Clinical Neurophysiologist

measure as EEG then we shall have to see whether trying to interfere with the
system rather with the event itself may lead to diminution of the chance of seizure
occurrence [3, 16].

Another equally important challenge the EEGer faces is to document the
time slot which is most appropriate for the administration of whatever coun-
termeasures we may devise to help prevent the occurrence of clinically manifest
epileptic seizures in a patient on the basis of the running EEG, irrespective
of whether this should be in terms of aborting a seizure or diminishing its
chance of occurring altogether. Aborting seizures by means of electrical counter-
stimulation is an ancient art, known since Roman times, in this case relying
on giving a timely jolt delivered to the patient by an electric eel [17]. In our
times this has been reported in both epileptic network models [18, 19] and in pa-
tients [20,21]. The distinction of what constitutes open versus closed-loop electrical
stimulation has been made on the basis of discussions carried out among the
participants of the Second International Workshop on Seizure Prediction, held
in 2006 [22]. Closed-loop electrical stimulation based on a perturbation pattern,
and an open-loop system monitoring subtle changes en route to a seizure, has
been advocated in patients implanted with invasive electrodes during video/EEG
seizure monitoring. Such dynamical system changes may be inferred from the
measured fluctuations of the EEG phase-clustering index, indicating a high
likelihood of seizure occurrence [23], but have yet to be validated in clinical
practice.

While appropriate stimulation may bring about a seizure in certain forms of
reflex epilepsy, the first report of therapeutic sensory-motor counter stimulation
has been attributed to John Hughlings Jackson who ostensibly described how a
patient of his could arrest a Jacksonian fit by forcibly manipulating the thumb in
which the clonic movement occurred before these spread to the rest of the hand
and lower arm [24]. Local application of toxins such as that of the cone snail seems
to be effective at least in experimental animal models [25]. All such interventions
have one thing in common, which is that they require timely application of a
counter stimulus. Other techniques in seizure prevention such as lowering of the
temperature at the zone of ictal onset in the hippocampus [26] have been reported
to be effective and may be expected to be less demanding than the application of a
counter stimulus.

Undoubtedly, if not for want of a better intellectual challenge, the sceptical EEGer
may still be won over by pondering the practical consequences of effective seizure
anticipation in a clinical setting: benefits may be derived in the Epilepsy Monitoring
Unit (EMU) from adequate use of techniques offering a reliable estimate for
impending seizure occurrence. In the most practical of situations the level of
monitoring may be tailored on the seizure likelihood, freeing resources and cutting
costs [27]. Imaging modalities such as reliably performing an ictal SPECT study [28]
may become feasible for a considerably larger percentage of the EMU population.
The effect of any type of intervention meant to reduce the chance of seizure
occurrence may be readily measured, particularly for techniques with a relatively
difficult-to-prove effectiveness such as vagal nerve stimulation [29], transcranial
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magnetic stimulation [30, 31], and deep-brain stimulation [32] in epilepsy. The fact
that the perfect study, rejecting the null hypothesis that epileptic seizures in humans
may never be reliably anticipated if not predicted, has yet to be performed (B. Litt,
this workshop). This implies that world-wide collaboration in the community of
basic scientists, mathematicians, engineers, and clinical neurophysiologists who are
addressing the issue of seizure anticipation will continue for the foreseeable future.

25.2
Appendix: Does the EEGer Need Seizure Prediction?

The Dutch Full-time Clinical Neurophysiologists’ Survey

1. Is seizure prediction possible now?
Yes 0
No 22
Do not know 14

2. Will seizure prediction ever be possible?
Yes 5
No 20
Do not know 11

3. Does the EEGer need seizure prediction now?
Yes 5
No 31
Do not know 0

4. Will the EEGer ever need seizure prediction?
Yes 9
No 20
Do not know 7

5. Would you recruit patients for seizure-prediction trials on a compassionate-use
basis of seizure-prevention methods?

Yes 7
No 28
Do not know 1

6. Would you recruit patients for seizure-prediction trials on an intention-to-treat
basis in an effort to develop new therapy strategies?

Yes 0
No 29
Do not know 17

7. Would you consider it a major improvement in your EEG practice if seizure
prediction were to be reliably carried out?

Yes 15
No 21
Do not know 0
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8. Would patients consider it a major improvement in their treatment if seizure
prediction were to be reliably carried out?

Yes 23
No 5
Do not know 8

9. Would you recommend to patients that they make use of seizure-prediction systems if
seizure prediction were to be reliably carried out?

Yes 30
No 1
Do not know 5

10. Who should foot the bill for the use of seizure-prediction systems if seizure prediction
were to be reliably carried out?

Patient 2
3rd Party payer 11
Both 30-70 5
Both 50-50 9
Both 70-30 4
Do not know 5

11. Should the EEGer need to think about seizure prediction?
Yes 20
No 1
Do not know 15
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26
State of Seizure Prediction: A Report on Informal Discussions
with Participants of the Third International Workshop on Seizure
Prediction

Hitten P. Zaveri, Mark G. Frei, Ivan Osorio

26.1
Introduction

Seizure prediction using EEG signals has been attempted for over two decades
now. Past and current work in this field can be broadly categorized into three
phases. A conceptual advance was achieved in the first phase through the definition
of the problem and initial attempts to predict the onset of seizures from the EEG.
Several studies have been reported since these first efforts. The description of chaos
in deterministic systems heralded a second phase of work (from approximately
the mid-1980s), one which remains active to the present time. The efforts that
comprise this second phase of work consider seizures to be an expression of
chaos and seek to detect markers that represent transition to this phase. More
recently, there has been a broadening of the field which may be considered
to be a third phase of the effort. In this phase of work a broader set of time
series analysis methods, including those drawn from classical time series analysis,
are being employed to detect pre-seizure cursors. While the motivations for
the use of these measures tend to be diverse, a few common threads can be
discerned. Central among these are a desire to measure changes in cortical
excitation and synchronization that would allow detection of the transition from
the background state to a preictal state, without which prediction may not be
possible.

Several other characteristics are also coming to typify emergent work in this field,
irrespective of the time series measures being employed. The increased capability
of instrumentation systems to collect longer-term data and the increased capacity
of digital data storage systems and computer processing power is allowing greater
ability to collect and analyze longer data sets. This is evident in recent publications.
Clearer statistical definitions have been proposed that allow determination of
whether or not an approach results in the prediction of seizures and quantifies the
improvement in prediction performance beyond simply chance. An adoption of
some of these standards is also evident in more recent reports. There has also been
an evolution in the model for seizure predictability from a naı̈ve deterministic model
for state transition to one that is probabilistic in nature. There are increasingly
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sophisticated studies, as well, with animal and slice models of epilepsy suggesting
an influence of research initiated in humans, to experiments by basic scientists in
order to better understand pre-seizure changes and seizure generation.

Central to work in this field are the efforts of an interdisciplinary group of
scientists. Members of this group include engineers, physicists, mathematicians,
epileptologists, neurosurgeons, and basic scientists. These scientists have come
together to understand the issues involved in seizure prediction, and beginning with
the second workshop on seizure prediction in 2006, the scope of this effort has been
expanded to include seizure generation and seizure control. This interdisciplinary
team and the support of its work in multiple countries by various national and
international organizations and also the support of its meetings and the attempt
to create a common language of goals and metrics, as well as the involvement of
academia and industry, all help to provide confidence that progress, both iterative
and revolutionary, is possible in this field.

This section summarizes an informal attempt to gauge the opinion of some of
these scientists regarding the future of this effort. Those involved in the discussion
reported here were all participants of the Third International Workshop on Seizure
Prediction. Scientists were asked two questions during informal discussions,
during lunch, dinner or coffee breaks, in either individual or group conversations.
The questions asked were the following: (1) What single factor represents the
greatest obstacle to the advance of seizure prediction? (2) What single factor, not
necessarily related to the first factor identified, provides the greatest hope for an
advance in the field? The following participants discussed the two questions:

1. Gregory Bergey, John Hopkins University, USA

2. Anatol Bragin, UCLA, USA

3. Paul Carney, University of Florida, USA

4. Piotr Franaszczuk, John Hopkins University, USA

5. Mark Frei, Flint Hills Scientific, USA

6. Jean Gotman, Montreal Neurological Institute, Canada

7. Matia Gotman, SWR Orchestra, Freiburg, Germany

8. Nina Graves, Medtronic, USA

9. Stiliyan Kalitzin, SEIN, Netherlands

10. Anna Korzeniewska, John Hopkins University, USA

11. Fernando Lopes da Silva, SEIN, Netherlands

12. Ivan Osorio, University of Kansas, USA

13. Joelle Pineau, McGill University, Canada

14. Justin Sanchez, University of Florida, USA

15. Andreas Schulze-Bonhage, University of Freiburg, Germany

16. Steven Schiff, Pennsylvania State University, USA
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17. Yitzhak Schiller, Rambam Medical Center, Israel

18. Randall Stewart, NINDS, USA

19. Piotr Suffczynski, Warsaw University, Poland

20. Demetrios Velis, SEIN, Netherlands

21. Fabrice Wendling, Universite De Rennes, France

22. Hitten Zaveri, Yale University, USA.

The discussions were often wide-ranging. Some of the topics raised are beyond
the scope of this report and have not been included here. A few common threads
could be drawn from the discussions. It was considered that these thoughts may
have value for those interested in seizure-prediction research, and for the planning
and organization of future workshops on seizure prediction. These are presented
below.

26.2
Modality

While it is widely recognized that the intracranial EEG (icEEG) contains con-
siderable information relevant for attempts at seizure prediction, concerns were
expressed about this modality. There is a perceived limitation of the icEEG in
capturing markers of a pre-seizure state, due to the fact that it provides information
at a single scale, while many believe that seizure generation and seizures are
multi-scale phenomena. Others expressed concern that the icEEG was but one
modality, and we would need to study several modalities, such as neurochemistry,
ionic currents, pH, and temperature either in conjunction or separately to capture
and understand pre-seizure changes and seizure generation. Another concern was
the lack of a physiological model for the icEEG. Additionally, there were concerns
regarding numerous shortcomings of icEEGs obtained during intracranial moni-
toring for epilepsy surgery. These include, but are not limited to, trauma caused by
electrode placement, effects of anesthesia and of AED taper.

26.3
Seizure Generation and Models

A general concern, which appeared to encompass several related concerns, cen-
tered on seizure generation. One of these concerns was that the epilepsy patient
population was heterogeneous. Given that epilepsy is a collection of disorders, and
is the end result of a number of factors which impact the brain, it is not clear
that there will be commonality in the pre-seizure state among different etiologies.
This raises questions about the ability of one or even of a few seizure-prediction
approaches to capture the heterogeneity found in the epilepsy patient population.
The point being expressed is that there may be several routes, and not only one
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route to seizure generation, and that the inability of any particular approach to
successfully predict seizures across a large group of subjects may simply reflect the
diversity of the epilepsy patient population.

A fair amount of the discussion also centered on models. There was concern
on the lack of actionable information on seizure generation which could be
incorporated within useful biophysical models; that is, models which could capture
the essence of seizure generation, and which could provide greater insight into the
process by which seizures are generated. A general suggestion was that the field
would benefit from the use of models along the lines of those which exist for our
planetary system, which can be used to calculate the position of planets to a degree
of accuracy. It was argued that, in the absence of accurate models of brain function,
even simple models which allowed a first-level approximation, for example, such
as that provided by the Bohr model of the atom, could be useful. It was also argued
that models must not only be useful, they must be mechanistic, and based on
observations at a mechanistic level (e.g., cell-to-cell communication and ion shifts).

26.4
Academia and Industry

An increased commercial interest in the field was evident from several aspects of
the meeting and its organization. This increased interest was considered to present
both a challenge and a source of hope. Commercial interest, it was felt, indicated
a greater overall interest in the field, the maturing of knowledge within the field,
and the hope that this knowledge could be translated into better treatment for
patients. Concerns were raised, however, that commercial entities operate on very
different, and shorter, timelines, and that, if there was not clear success within a
short time, it could spell a possible setback for the field. A second concern was
that the group had not adequately addressed issues involving intellectual property
(IP) generation and protection. It was indicated that issues concerning IP could
set up difficulty in partnerships between academic groups, and between academic
and industry groups. It was strongly suggested that the group raise awareness on
IP issues, and discuss openly the differences in approaches and goals of academia
and industry-based groups.

26.5
The Question of Seizure Prediction and its Prioritization

Still other views were expressed regarding the question of seizure prediction and
the prioritization of efforts towards seizure prediction. The first concern, stated
bluntly, is that it is not necessarily possible to predict future states of a dynamical
system on the basis of a limited amount of measurements. Thermal fluctuations,
external input and dynamic instability may be limiting factors. More research is
needed to understand the influence of those and possibly other factors on our
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ability to predict epileptic seizures. This reservation was stated in the context of
the arguments, presented above, for improved measurement of the brain with
multiple scales of measurement and the use of icEEG in conjunction with other
modalities. This reservation also conveys the skeptic’s view of seizure prediction.
A second viewpoint is that the field has tried to proceed too far too quickly. The
concern is that the definition of seizure prediction as a metric of progress for this
field is overly ambitious and unrealistic. What we can achieve with the EEG and
the current definition of seizures, however, is seizure detection. It was suggested
that we should further improve detection, with efforts being focused on earlier
detection of seizures. It was argued that this may allow better implementation of
means for automated seizure control and possibly lead to an advance in seizure
prediction.

26.6
Summary

These notes reflect informal discussions during the Third International Workshop
on Seizure Prediction centered on the two questions presented above. The questions
and resultant discussions were not intended as a formal poll and they were not
considered, at the time, to constitute material for a report. This was also not an
attempt to discuss and report the views of only a particular subset of the participants
of the workshop, nor are the views reported here held by all those who participated
in the discussions. The role of the questions was to help organize informed
discussion between scientists from diverse backgrounds and interests. In this they
worked well, as they led to considerable discussion during breaks. In retrospect,
however, the questions and discussions can be considered to be incomplete. For
example, due to a lack of time the discussions often did not reach the point where
the second question could be addressed. Also, the questions do not touch upon
seizure control, which is an integral part of the work of many scientists within
the group. Further, the participants were asked to identify only a single challenge
and a single factor which provided hope. Such limitations possibly restricted the
discussion. Still, if the information presented here is considered within the context
from which it has been derived, it may have value in that it helps gauge the views of
this diverse group of scientists, and may help guide part of the planning for future
meetings.

There was remarkably little discussion of specific algorithms or time series
measures which have fueled work in the previous phases of effort on seizure
prediction. The concerns, rather, focus on different aspects of the phenomenon
being studied, how best to measure it and how best to model it. Some of the
issues raised during discussions are open questions. For example, the lack of
a physiological model for the genesis of the EEG has existed for the tenure of
our knowledge of this signal. Other issues are the subject of intense direct and
overlapping research by multiple groups. For example, there are multiple efforts
to better measure brain activity at different scales and incorporate this knowledge
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within our understanding of seizure generation. There are also attempts to improve
the recording of the icEEG, and to accumulate enough long-term data to help
address the challenge of the heterogeneity of the epilepsy patient population.

Scientists expressed an opinion that progress, though slow, was being made;
that insight was being generated through the use of time series analysis of the
EEG, and that this insight could help guide experiments being conducted by basic
scientists. Some were pleased that attempts were being made to record seizures
at multiple scales and incorporate this information within our understanding of
seizures and attempts to predict the onset of seizures. Others were pleased at
efforts to collect and test on longer data sets. Hope was expressed that, with
traction, more powerful theory and methodology could be brought to bear on
the problem. Some scientists expressed a growing flexibility to work with partial
knowledge to understand seizures and intervene to control seizures. Finally some
of the discussion touched upon one of the most essential characteristics of this
effort, its remarkable interdisciplinary nature. It was emphasized that the key to
progress may lie in better integration, across various investigational approaches,
of extant information on seizure generation. That is, the requisite information
may already exist, but sufficient effort may not have been expended to synthesize
it. Others found hope in the very existence of an international interdisciplinary
effort, spanning academia and industry, believing this effort would be able to make
progress towards understanding seizure generation, and towards predicting and
controlling seizures.
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